FINAL REPORT OF THE 1973 ARCHAEOLOGICAL SURVEY OF PRINCE ALBERT NATIONAL PARK: FINDINGS AND RECOMMENDATIONS

by Eugene M. Gryba

1974
by Eugene M. Gryba
1974
The Manuscript Report Series is printed in a limited number of copies and is intended for internal use by Environment Canada. Copies of each issue are distributed to various public repositories in Canada for use by interested individuals.

Many of these reports will be published in Canadian Historic Sites or History and Archaeology and may be altered during the publishing process by editing or by further research.
by Eugene M. Gryba

ix Abstract
x Acknowledgements
1 Introduction
3 The Ecology of Prince Albert National Park
3 Introduction
3 Location
5 Topography and Surficial Geology
5 Bedrock Geology
6 Climate
7 The Biotic Elements
11 Paleo-ecological Situation
13 The Human Element
24 The Archaeological Survey
24 Specific Objectives
24 Elk Trail
38 Kingsmere Lake Survey
41 Namekus Lake
43 Waskesiu Lake Survey
62 The Narrows Site
146 Discussion and Interpretation of the Archaeology of Prince Albert National Park
153 The Evaluation of the Archaeological Potential of Prince Albert National Park
160 Recommendations for Site FlNn-6
160 Landscaping and Restoration
162 Road Improvements
163 Archaeological Development
171 Appendix A. Section 3 of the Contract Specifying the Project Requirements.
173 Appendix B. Artifacts of Native Origin Recovered During the 1973 Excavations of Site FlNn-6.
175 Appendix C. Artifacts of Eurocanadian origin Recovered During the 1973 Excavations from Site FlNn-6.
177 Appendix D. Hand-Wrought Rectangular-Shanked Nails from Site FlNn-6.
178 Bibliography

Tables
57 1 Artifacts from the Narrows Peninsula Site FlNn-103
71 2 Surface material from Site FlNn-6
77 3 Artifacts from Site FlNn-6, Locality 8, Test Pit 1
78 4 Artifacts from Site FlNn-6, Locality 8, Test Pit 2
79 5 Artifacts from Site FlNn-6, Locality 8, Test Pit 3
91 6 Surface material from Site FlNn-6, Locality 4
92 7 Artifacts from Site FlNn-6, Locality 4, Test Pit 1
93 8 Artifacts from Site FlNn-6, Locality 4, Test Pit 2
94 9 Artifacts from Site FlNn-6, Locality 4, Test Pit 3
95 10 Artifacts from Site FlNn-6, Locality 4, Square 1S 21E
96 11 Artifacts from Site FlNn-6, Locality 4, Square 5S 21E
97 12 Artifacts from Site FlNn-6, Locality 4, Square 7S 20E
97 13 Artifacts from Site FlNn-6, Locality 4, Square 7S 20E
98 14 Artifacts from Site FlNn-6, Locality 4, Square 8S 16E
99 15 Artifacts from Site FlNn-6, Locality 4, Square 8S 20E
100 16 Artifacts from Site FlNn-6, Locality 4, Square 8S 21E
101 17 Artifacts from Site FlNn-6, Locality 4, Square 8S 22E
101 18 Artifacts from Site FlNn-6, Locality 4, Square 8S 22E
Absolute and relative frequencies of chipping detritus from Site FlNn-6

Artifacts from Site FlNn-6, Locality 7, Test Pit 34N 1E
Artifacts from Site FlNn-6, Locality 7, Test Pit 38N 1W
Artifacts from Site FlNn-6, Locality 7, Test Pit 38N 3W
Artifacts from Site FlNn-6, Locality 7, Test Pit 39N 0E
Artifacts from Site FlNn-6, Locality 7, Test Pit 39N 1E
Artifacts from Site FlNn-6, Locality 7, Test Pit 39N 2W
Artifacts from Site FlNn-6, Locality 7, Test Pit 39N 3W
Artifacts from Site FlNn-6, Locality 7, Test Pit 39N 4W
Artifacts from Site FlNn-6, Locality 7, Test Pit 39N 9W
Artifacts from Site FlNn-6, Locality 7, Test Pit 40N 1W
Artifacts from Site FlNn-6, Locality 7, Test Pit 40N 3W
Artifacts from Site FlNn-6, Locality 7, Test Pit 44N 1E

Illustrations

1 Location of Prince Albert National Park within Central Canada.
2 Map of the Western Interior of Canada showing the position of the open aspen Parkland belt situated between the Northern Plains and the Boreal Forest.
3 Map of the Western Interior of Canada showing the range limits of important game species.
4 Ray's model showing the overlapping exploitative systems of the Plains-adapted and the Forest-adapted Native peoples.
5 Map of the Western Interior of Canada showing the tribal distributions to ca. 1650 and ca. 1763.
6 Map of the Western Interior of Canada showing the tribal distributions in 1821.
7 Map of Prince Albert National Park showing the areas covered during the 1973 archaeological survey.
Map of Prince Albert National Park showing the location of all archaeological sites recorded during the 1973 archaeological survey.

A primary phase in the manufacture of stone tools; stone age artisans attempting to remove flakes from a large cobble.

The hard hammer percussion technique.

A variation of the hard hammer percussion technique.

A variation of the soft hammer percussion technique.

The bipolar technique used in the manufacture of stone tools.

Artifacts from the 1973 archaeological survey of Waskesiu Lake.

The indirect percussion technique.

The application of the pressure technique in finishing an unmounted projectile point.

The application of the pressure technique in finishing a mounted projectile point.

The functional application of a stone wedge in the production of bone and wood artifacts.

Indirect percussion performed by the use of a mallet and a punch.

Functional application of an unhafted stone knife.

Functional application of an unhafted end scraper.

Several methods of using a stone drill.

A means of retouching a stone tool.

Site F1Nn-6; view of the area of the abandoned storm beaches.

Sketch map of the Narrows Site, F1Nn-6, showing the main geomorphic features and the locations of Localities 4, 7 and 8.

Contour map of the Narrows Site, F1Nn-6, showing Localities 1 to 10 and the location of the 1973 test pits.
Lithic artifacts from Site FlNn-6, Locality 8.
Sample of the lithic debitage recovered from Site FlNn-6, Locality 8.
Artifacts recovered from Site FlNn-6, Locality 8.
Reconstruction of a prehistoric scene at Site FlNn-6.
Reconstruction of a prehistoric domestic scene at Site FlNn-6.
Platform flakes from Site FlNn-6, Locality 4.
Artifacts from Site FlNn-6, Locality 4.
Artifacts of Native origin from Site FlNn-6, Localities 4 and 8.
Native ceramics from Site FlNn-6, Locality 4.
Artifacts of Native and Eurocanadian origin from Site FlNn-6, Locality 4.
Lithic artifacts from Site FlNn-6, Locality 4.
Three bipolar cores from Site FlNn-6, Locality 4.
Artifacts recovered from the historic cellar at Site FlNn-6, Locality 4.
Site FlNn-6, Locality 4, showing exposed lithic debris and the boulders from a scattered prehistoric fire hearth.
Artifacts of Eurocanadian origin from Site FlNn-6, Locality 4.
Artifacts of Eurocanadian origin from Site FlNn-6, Locality 4, Test Pits 1, 2 and 3.
Rectangular-shanked hand-wrought nails from Site FlNn-6, Locality 4.
General view of Site FlNn-6, Locality 4.
The historic cellar at Site FlNn-6, Locality 4.
General plan of the 1973 excavations at Site FlNn-6, Locality 4.
Detailed plan of the historic cellar found at Site FlNn-6, Locality 4.
118 48 Proliferation of artifacts in and around the historic cellar found at Site FlNn-6, Locality 4.
126 49 Projectile points recovered during 1971 from Site FlNn-6.
126 50 End scrapers recovered during 1971 from Site FlNn-6.
130 51 Reconstructed neck and shoulder fragments of Native ceramics from Site FlNn-6, Locality 7.
130 52 Reconstructed body sherd of Native ceramic from Site FlNn-6, Locality 7.
131 53 Two rim sherds of fabric-impressed Native ceramic from Site FlNn-6, Locality 7.
131 54 Two reconstructed fragments of historic ceramic recovered from Site FlNn-6, Locality 7.
132 55 Artifacts of Eurocanadian origin recovered from Site FlNn-6, Locality 7.
Abstract

In the summer of 1973 the National and Historic Parks Branch of the Department of Indian and Northern Affairs supported a three-month archaeological survey of Prince Albert National Park. This report presents the final results of that survey. Besides containing a description and interpretation of the material recovered in the field, the report contains an objective evaluation of the archaeological resources of the Park. Central to this evaluation is an examination of the factors which lend the archaeological data their particular character and whose combined effects pose a tremendous handicap for anyone concerned with presenting meaningful and valid interpretations of the human history of the area.

Recommendations for the preservation or development of the sites located are presented where deemed appropriate. A possible course of action for the development of the main site, F1Nn-6, is proposed.
Acknowledgements

Much of the success of the 1973 archaeological survey of Prince Albert National Park was possible only through the cooperation and assistance of many people, both in Winnipeg and in the field. Those who should be commended most are the members of the National and Historic Parks Branch who realize the value and importance of the cultural heritage of this country.

In the field, Chief Naturalist Ron Dutcher and other members of the administrative and interpretive staff of Prince Albert National Park deserve a special vote of thanks for their assistance as well as the patience they showed as the survey was carried through. Ron was especially helpful in communicating to the writer the specific objectives of the interpretive and administrative personnel as they related to the archaeological resources.

At Winnipeg, several people were directly or indirectly involved with various aspects of the project. Leo F. Pettipas [then of the Department of Anthropology, University of Manitoba], was actively involved in the administration of the research funds. His assistance with the preparation of this report is also gratefully acknowledged. Other people were involved and to them is expressed a sincere vote of thanks. Val Tadda, an Honours graduate in Anthropology at the University of Manitoba, prepared the drawings showing the aboriginal scenes at Site FNInn-6. Edward Pachanuk of the Department of Geography undertook the task of preparing the photographs of these drawings as well as the figures reproduced from Ray.
The patience and care which he gave in the preparation of all the prints used in this report is likewise gratefully appreciated.

The writer is greatly indebted to the secretaries of St. Paul's College on the campus of the University of Manitoba, Rachelle Cadet, Beryl Lagasse and Jackie Boissonneault, who undertook the task of typing up the final draft of this report. To all of them is expressed a sincere note of thanks.

The photographs of the excavation scenes and the artifacts were taken by the writer who also drew the line drawings of the artifacts and the site maps. The writer assumes sole responsibility for the content of this report.
Introduction

The 1973 season represented the second major season of archaeological survey of Prince Albert National Park. In 1971 a crew from the University of Saskatchewan, directed by M. Forsman, located and recorded a total of 75 sites. Nine of these were tested. The planned expansion of tourist facilities in the vicinity of the First Narrows on Waskesiu Lake and the improvement of the Elk Trail route in the southern portion of the Park were the prime factors which led to the cause for concern by Park authorities over the salvage and preservation of the archaeological resources of the Park. Added to this was the interest shown towards the possible development of these resources.

The possibility of carrying out a survey of Prince Albert National Park was made known to the writer by Leo F. Pettipas, who had been instrumental in directing the archaeological surveys of Riding Mountain National Park since 1971. Originally, it had been expected that two other graduate students would work on the survey, but because of the late date at which the contract was approved and the subsequent commitment of the students to other projects, the crew, aside from the writer, ultimately comprised two advanced undergraduate students in Anthropology—Robert Mayer of the University of Manitoba and Ian Stark of the University of Saskatchewan, Saskatoon Campus. Despite these minor delays and the inconveniences caused by a season of above normal precipitation, almost three full months of work were carried out in the Park.

The survey was conducted in agreement with the project
requirements as outlined in the 1973 contract (see Appendix A). Areas slated for development were specified in the contract and additional critical areas were brought to the writer's attention by the Park officials at Waskesiu. All of these places received thorough inspection. Many areas yielded no archaeological evidence. Where sites were located, they were evaluated for their salvage and development potential on the basis of surficial evidence and, where necessary, on the basis of extensive testing.

The objectives of the survey were to determine as fully as possible the location, type and chronological position of archaeological sites and the predictable impact upon them by road and other kinds of development and, equally important, how these sites can best be developed so that they may become an important factor in the public interpretive program of the Park.

The present report is intended first of all to be a statement of the results of the 1973 survey, dealing specifically with the findings and recommendations; it is designed to be informative to persons concerned with the expansion of tourist facilities and roads or with the development of the archaeological resources. The report goes beyond a mere description of the material recovered during the survey; it contains a quantity of substantive data which would be pertinent to the development of the major site tested—FLNn-6. The latter was represented by two phases of human history: a phase of Native history (or prehistory), and a later phase of Native-White history.

Admittedly, due to the nature of the preservation of the archaeological record, reliance has been placed on ethnographic sources for the reconstruction of possible subsistence activities, seasonal movement, lithic technology, social organization and other aspects of former human habitation.
Illustrations are included in order to better communicate some examples of possible domestic activities.

The reconstruction of human activities within the Park during the historic Native-White phase of occupation is a separate project and will only be touched upon briefly here. It is one area where additional archival research may prove fruitful.

While it will become evident that the Park has a long period of human history, it will also become evident that major gaps exist—gaps which could only be filled by future work both inside and outside the Park boundaries.

The Ecology of Prince Albert National Park

Introduction
A full appreciation of the nature of past human occupation of Prince Albert National Park requires a general familiarity with the past and current ecological situations of this area. Such information is basic to understanding the particular types, or latitudes of possible types, of exploitative and social systems of the past inhabitants, as well as the adaptive changes these had to undergo in response to changes in the natural and social environments and to major historic events.

Location
Prince Albert National Park comprises an area of 1,496 square miles in central Saskatchewan between 53°35' and 54°20' north latitude and 106° to 106°42' longitude west of the Principal Meridian. It forms a rectangle of land extending 30 miles east-west and 50 miles north-south, some 40 miles north of Prince Albert (Figure 1).
Figure 1. The location of Prince Albert National Park within Central Canada.
Topography and Surficial Geology

The Park is situated in an area of rolling to hilly terrain that forms a divide between two major river systems, the Churchill and the North Saskatchewan. Much of the land is above 1800 feet above sea level in elevation with local hills such as the Waskesiu Hills south of Waskesiu Lake and the Thunder Hills, which extend beyond the northern boundaries of the Park, reaching elevations in excess of 2300 feet a.s.l. Generally lower land surrounds these hills. West of the Sturgeon River system, the land again rises to form the Mostoos and the Thickwood Hills, which are a part of the Missouri Coteau. To the east of Montreal Lake, the Cub and Wapawekka Hills rise over 500 feet above the surrounding plains to elevations of 2000 to 2400 feet above sea level.

Two principal natural agencies were responsible for the formation of the landscape features of this part of Saskatchewan. Along the western limits of the Park, the Sturgeon River and the Cowan and Delaronde Lakes occupy topographic features which had been formed by streams flowing eastward from the Rocky Mountains and later modified by Pleistocene glaciation (Whitaker and Christiansen 1972). Within the Park much of the landscape reflects the erosional and depositional actions of the continental glaciers and the meltwaters of these glaciers. Ribbed, hummocky, dead-ice and disintegration moraines provide relief at the local level (Kupsch 1969: 50-1).

Bedrock Geology

Except for some shale deposits exposed along the roadside of the highway branching to the northwest from Provincial Highway No. 2 at the northeast corner of the Park, all other areas within and adjacent to the Park that were examined showed that glacial tills everywhere obscured the bedrock formations. The
till is underlain by shales of Cretaceous age. To the north, at the south end of Lac la Ronge, dolomites and limestones of Devonian age make up the exposed bedrock formations. Byres, Caldwell and Kupsch (1969: 46) show that the Precambrian formations comprising the metamorphic and igneous rocks of the Canadian Shield occur along the north and east shore of Lac la Ronge and extend north and east to make up the bedrock formations of most of northern Saskatchewan. These formations are characterized by occurrences of granites, quartz diorite, gabbro, arkose, greywacke, quartzite, schists, gneisses and other sedimentary, volcanic and metamorphic rocks. A great expanse of Athabasca sandstone, siltstone and shale is found south and southeast of Lake Athabasca.

The bedrock and surficial geology was an important factor in the movement of past populations, particularly where drainage systems were determined to a large extent by these features. They were also a key factor in the overall ecology of the past inhabitants because of their influence on biotic and other resources. As will be discussed further on, the lithic technology reflects to some degree the adjustments prehistoric peoples had to make to the rather poor quality of the lithic resources that were locally available to them in this part of Saskatchewan.

Climate
Prince Albert National Park lies within the Dfc or "Gold Snow Forest" climatic region (Chakravarti 1969: 52-60). Coniferous forests are characteristic of this climatic region. Seasonal extremes in temperatures reflect the continental aspect of the climate. Summers are cool and very short, with less than four months over 50°F mean temperature. The frostfree period is less than 80 days, and freezing may be expected even in the
warmest month of the year. The mean normal daily temperature in January is around -3° F, while in July it is between 60° F and 65°F.

In terms of precipitation, the Park lies within the Dry Subhumid moisture region, which covers much of the province of Saskatchewan (Chakravarti 1969: 52, 60). Most of the 12-16 inches of precipitation fall during the late spring and summer months.

The Biotic Elements

Flora
Copeland and Rowe (1969: 74) identify four major forest zones of Saskatchewan, two of which lie within the geologic region of the Canadian Shield. Prince Albert National Park occurs within the mixedwood forest zone, which is found south of the Canadian Shield where the underlying soft bedrock has led to the deposition of deeper soils which support a richer growth of conifers and broadleaf trees on grey-wooded (podzolic) soils. South of this is the aspen belt, a zone which is dominated by aspen poplar and which is a zone of transition from boreal forest to parkland.

In point of fact, the Park lies within a zone of transition, for the conifers form a dominant element in the northern part of the Park while deciduous forms are more significant elements in the southern section (Figure 2). The dominant trees of the mixed forest section include, in the drier areas, jackpine (*Pinus banksiana*), white spruce (*Picea glauca*), aspen (*Populus tremuloides* and *P. balsamifera*) and shrubs such as Saskatoon (*Amelanchier alnifolia*), hazel (*Corylus cornuta*), cherry (*Prunus spp.*) and a host of other shrubs and forbs. Other
Figure 2. Map of the Western Interior of Canada showing the position of the open aspen parkland belt situated between the Northern Plains and the Boreal Forest (from Ray 1971).
plants have a much broader tolerance and may be found in either upland or lowland sites. These are the white birch (*Betula papyrifera*), black spruce (*Picea mariana*), willow (*Salix spp.*), blueberry (*Vaccinium myrtillus*), and larch (*Larix laricina*), plus shrubs and smaller herbs that make up the understorey.

The hilly section of the central part of the Park offers a diversity of topography in terms of aspect, so that local areas of organic terrain with a particular assemblage of flora may occupy depressions in close proximity to small knolls which have a different assemblage of plants.

Fauna

Maher (1969: 82) remarks that 78 species of wild mammals occur or have occurred in Saskatchewan in historic times. He further notes that of these, 25 have geographic ranges which are confined to the boreal (or northern forest) regions, while the ranges of 18 others extend over both boreal and more southerly "temperate" areas (Figure 3). The remaining 35 mammals range south of the boreal forest. The Provisional Master Plan for Prince Albert National Park (Anonymous n.d.) states that at least 47 species of mammals are known to occur within the Park. This figure is assumed to be based upon recorded observations. Those that have been recorded for this area include the following ungulates, carnivores, rodents and insectivores: bison (*Bison bison*), moose (*Alces alces*), wapiti or elk (*Cervus canadensis*), woodland caribou (*Rangifer tarandus sylvestris*), white-tailed deer (*Dama virginianus*), mule deer (*Dama hemionus*), black bear (*Ursus americanus*), grey wolf (*Canis lupis*), coyote (*Canis latrans*), red fox (*Vulpes fulva*), mountain lion (*Lutra canadensis*), striped skunk (*Mephitis mephitis*), badger (*Taxidea taxus*), beaver (*Castor canadensis*), mink (*Mustela vison*), fisher (*Martes pennanti*),
Figure 3. Map of the Western Interior of Canada showing the range limits of the important game species. Note the range limit of the bison as far north as the Churchill River and Lac la Ronge. Prince Albert National Park is situated in an area where the range of Woodland species and Plains species overlapped (from Ray 1971).
ermine (*Mustela ermina*), least weasel (*Mustela rixosa*), porcupine (*Erethizon dorsatum*), snowshoe hare (*Lepus americanus*), woodchuck (*Marmota monax*), red squirrel (*Tamiasciurus hudsonicus*), northern flying squirrel (*Glaucomys sabrinus*) and other small rodents and insectivores.

The grizzly bear (*Ursus horribilis*), wolverine (*Gulo luscus*) and marten (*Martes americana*) also had a much broader range in former times. Until fossil deposits are discovered, the nature of the prehistoric faunal population, which was a vital constituent of the resource base of the prehistoric inhabitants of the Park, must be reconstructed upon the historic recordings.

The aquatic and avifaunal resources were important elements in the particular economic orientation of a hunting-gathering population. Prince Albert National Park lies within the geographic area of lake trout, northern pike, sucker, walleye and yellow perch (Atton 1969: 83-4). Wildfowl is well represented in this area; most of the larger waterfowl and birds of prey have a province-wide distribution and central Saskatchewan forms part of the central migratory flyway.

Paleo-ecological Situation
The contemporary ecological situation relating to the composition and structure of the flora of the major forest zones of central Saskatchewan is not necessarily an accurate indicator of the situation as it existed in the past. This is because it conveys a static picture whereas, in fact, the flora must be seen as a dynamic aspect of the environment. That is, it must be viewed as a process. Fires originating both from natural and manmade causes and climatic changes were perhaps the two most important factors which affected the composition and structure of any of the forest zones (there are other
factors such as disease, etc.).

Wright and Heinselman (1973), Rowe and Scotter (1973) and others have presented detailed arguments showing that fires, in general, had many functions in the natural forest ecosystem. Fires

...influence the physical-chemical environment, releasing minerals and nutrients locked in living and dead organic matter and by changing the chemical or physical nature of the mineral soil, are a critical factor in the reproduction stage of many plant communities; pine, for example, and other plants which regenerate from a root system; affect the animal species composition of the forest environment (Wright and Heinselman 1973: 320).

The seasonal burning of the open grasslands by the Native people was often cited by early explorers and today this aspect of the total adaptive strategy of the Plains inhabitants is common knowledge. Perhaps less well known is the fact that fire was frequently used by Native groups to manipulate the forest and parkland environments in order to improve the habitat of those plant and animal resources which contributed most to their subsistence economy. The continuation of the open aspect of the parklands, an environment suitable for the support of game animals such as bison and elk, plus a host of other animal species, was only possible by periodic burning which killed off new or regenerated trees. Similarly, the carrying capacity for moose in a mixed and boreal forest environment was improved through conscious burning. These periodic firings of the forest communities tended to remove accumulated dead vegetable matter and trees, and this added enormously to the ease with which Native groups were able to travel.

Long term climatic changes also influenced the composition and structure of particular environments. A series of published articles makes it possible to present some general statements regarding the past ecological situation of the
Park. In the abstract to his report on palynological studies in central Saskatchewan, Mott (1972: v), on the basis of his analysis of lake sediments from four Saskatchewan sites, reconstructed the general late-glacial and post-glacial vegetational and climatic history of the area.

Boreal vegetation dominated by Picea invaded the area as the ice retreated northward. Progressively younger radiocarbon dates on the Picea zones, 11,560 ± 640 (GSC-648) at Prince Albert, 10,260 ± 170 (GSC-647) within Prince Albert National Park, and 8520 ± 170 (GSC-643) near la Ronge, mark the migration northward. About 10,000 years B.P. a warmer and less humid climate caused grasslands to replace the boreal vegetation in the south and grasslands prevailed to the present in the Clearwater Lake area on the Missouri Coteau. Grassland vegetation also invaded the Prince Albert area and, although open grasslands did not extend as far north as the study site within Prince Albert National Park, a parkland type of environment may have existed for a short time. The grasslands retreated with the return of a cooler and more humid climate and a mixedwood forest developed in the Prince Albert National Park area. In the la Ronge area the Picea-dominated vegetation gave way to a mixedwood forest and then, after about 6000 ± 170 years B.P. (GSC-1335), a coniferous forest gradually developed.

The vegetational sequence is similar to that reconstructed for the uplands west of the Glacial Lake Agassiz Basin (Ritchie 1967). Another point to note is that, aside from possibly the la Ronge site, there is little evidence to suggest that tundra-like vegetation preceded the spruce invasion (Mott 1972: 13).

The Human Element
Given the minimal dates presented by Mott for the establishment of vegetation following the wasting of the ice from
central Saskatchewan (11,560 ± 640 at Prince Albert, 10,260 ± 170 within the Park, and 8520 ± 170 at la Ronge), it is likely that man wandered into the area at an early date. The evidence presented by Kehoe (1966b) shows that the southern part of the province was occupied by Clovis times, over 11,000 years ago. Clovis points are reported for the McCord area and a reworked specimen has been found near Arran in east-central Saskatchewan. The broader distribution of later Paleo-Indian points suggests that there was general occupation throughout the southern part of the Canadian Prairie Provinces by 9000 to 8000 years ago (Pettipas 1967; Wormington and Forbis 1965). Lanceolate Paleo-Indian points have also been recovered from sites well within the Boreal Forest region. Dickson (1972: 33, 197) reports what he tentatively classifies as points belonging to a late or terminal Paleo-Indian type from the South Indian Lake area of northern Manitoba. The writer has seen similar points collected by a Saskatchewan Museum field party from the Lake Athabasca region. It appears that, from C-14 evidence, the more northerly Paleo-Indian sites are younger than sites containing similar dated materials on the central Plains. The implications are that an Agate Basin-like form may have persisted longer within the Boreal Forest while on the Plains it was replaced by other forms.

Post Paleo-Indian occupation for the southern half of Saskatchewan is even better documented by the data provided by numerous surface and excavated sites in Saskatchewan or the adjacent parts of Alberta and Manitoba. The assemblages which mark the spots of concentrated domestic activities of the past hunter-gatherers are characterized by projectile points which are on the average smaller than former ones and are either side-, corner- or basally-notched (Dyck 1970; Gryba 1968; Kehoe 1966a; Mayer-Oakes 1970; Syms 1970;
It appears that Paleo-Indian assemblages were replaced or changed by the introduction of notched forms at a fairly early date (Reeves 1973). This assumption is supported by the early date obtained for Layer 12A at a site located by the writer in 1971 while doing a survey of sites slated for development by the park planners within the Cypress Hills Provincial Park in southeastern Alberta. An assemblage containing small side-notched points was recovered from Layer 12A at a depth of 3.5 meters below the surface. A radiocarbon date obtained for this layer was 7250 ± 250 B.P. A generally more intensive use of local resources, other than simply bison, is reflected in the campsite debris of many sites on the Northern Plains of this and subsequent periods.

A general cultural sequence for the southern part of the province for the last 5000 years preceding White domination is available from sites excavated near Moose Jaw, Estevan and Saskatoon (Wettlaufer 1955; Wettlaufer and Mayer-Oakes 1960; Dyck 1970). A diversified hunting-gathering economic orientation is indicated. The cultural components are identified by eared, corner-notched and stemmed or basally-indentied projectile points.

Ceramic-making people were present in Saskatchewan by A.D. 300 (Kehoe 1964). The general cultural sequence for the late prehistoric available for the southern part of the Prairie Provinces shows the people oriented towards a bison hunting economy with the use of large communal drives as a main strategem of this orientation. Temporal differences between cultural or ethnic groups is reflected by technological differences primarily in subtle changes in projectile point forms (Kehoe 1966a; Reeves 1970). Little attempt has been made to isolate regional cultural differences.
The evidence presented by Hlady (1964) and Ray (1970, 1971) (Figure 4) shows that major population movements and displacements, which were part of the pre-European scene, were common in much of interior North America during the early fur trade. Population pressures and a new economic orientation, the fur trade, factors directly initiated by the White colonials in eastern Canada and later at Hudson Bay, were largely responsible for these shifts. The two maps (Figures 5 and 6) from Ray (1970) show the tribal (i.e., ethnic) distributions in central Canada to ca. 1763 and in 1821. The first map shows the advancement of the Cree from east of Lake Winnipeg and the Nelson River in 1650 to the southern part of the Boreal Forest of Saskatchewan and eastern Alberta as far north as Cree Lake, Lake Athabasca and the Peace River. During this same interval, the Assiniboine advanced northwestward from southeastern Manitoba and occupied the parkland belt south of the Boreal Forest from western Manitoba to eastern Alberta. Between 1763 and 1821, two major groups extended their territories at the expense of other groups. To the east, the Ojibwa (Saulteaux) made inroads into Cree lands west of Lake Winnipegosis along the Red Deer and Saskatchewan Rivers upstream to approximately the forks of the Saskatchewan River, while the Assiniboine advanced southward and covered much of Saskatchewan and the northern States from the parkland belt to the Missouri River.

An earlier arrival date for the Cree into northern Manitoba has been suggested by Wright (1971: 21). Noting the cultural continuities between an historic Cree site and a dated prehistoric site, he concluded via the direct historical approach that the time depth of the Cree occupation of the Southern Indian Lake region can be extended back to the 13th or mid 8th century A.D. (several dates were obtained from the material). Archaeological investigation in central Saskatchewan
Figure 4. An idealized model, presented by Ray (1971), showing the diversity of seasonal economic activities of the two linguistic groups, the Forest-adapted, Algonkian-speaking Cree and Plains-adapted, Siouan-speaking Assiniboine and the ecological situation that brought the people of two radically different subsistence systems together during the winter time.
Figure 5. Map of the Western Interior of Canada showing the tribal (i.e., ethnic) distributions to ca. 1650 and ca. 1763. Note the western advancement of the Cree, Assiniboine and Ojibwa (Saulteaux) (from Ray 1971).
Figure 6. Map of the Western Interior of Canada showing the tribal distributions in 1821. Note the territorial gains made by the Ojibwa and the Assiniboine. Also note the wintering grounds of the Cree and the Assiniboine within the Parkland belt (from Ray 1971).
is still at a level where the utilization of the direct historical approach to reconstruct past ethnic boundaries and movements is met with frustration. Late prehistoric movements of Algonkian, Siouan and Athabascan speakers is known to have taken place. The southern Athabascan speakers, the Apache and Navajo, are excellent examples of such migrations. Kehoe and Kehoe (1968) suggested that the Avonlea culture, dated to around A.D. 500 and associated with communal bison hunting on the Northern Plains, represents a cultural intrusion from the Boreal Forest into the Plains region and may perhaps mark the fragmentation and separation of a large group of Athabascan speakers.

Direct White influence was felt at an early date in central Saskatchewan. Following the earlier inland incursions of Kelsey in 1690, the la Verendryes in 1738-50 (Innis 1956: 92-5) and others, the stiff competition between the French traders of eastern Canada and the British from Hudson Bay saw the expansion of trade into the Saskatchewan Basin. This period of expansion was most intensive between 1713 and 1763 (ibid.: 109). A fort was in existence on the Sturgeon River by 1777 (ibid.: 196). From here, Pond, Frobisher and others set out for the Mackenzie area. The proliferation of posts in central Saskatchewan was the consequence of the severe competition for fur resources and is summed up by McConnell and Turner (1969: 16):

The expense of carrying on a trade between Montreal and the western interior led the independent traders to combine and form companies. In turn, the threat to the source of furs posed by the inland posts of the new XY and Northwest Companies led the Hudson's Bay Company to extend its exploitation and build posts in the interior. Such posts as La Loche, Ile à la Crosse, Green Lake, la Ronge, Frog Portage, Fort Carlton and Cumberland House were established during this period (i.e. 1740-1780).
During the 1800s, after the amalgamation of the rival companies, Fort Carlton on the North Saskatchewan River above the confluence of the Saskatchewan Rivers assumed an important role as a way and departure station for overland traffic between Fort Garry and Edmonton, and to the Athabasca area by way of Green Lake. River transport existed between Fort Carlton and Fort à la Corne and Cumberland House even before 1850 (McConnell and Turner 1969: 11). An overland route from Prince Albert to Montreal Lake following Spruce River to the east end of Waskesiu Lake is also indicated, although the dates when it was in use are not given. It is suspected, however, that it functioned during the last half of the 19th century. In general, it appears that the western part of Waskesiu Lake and in particular the First Narrows area was not on a major overland or river route.

The latter half of the 19th century saw the initiation or the intensification of scientific and missionary activities throughout central Saskatchewan. The reports of the Geological Surveys of Canada, an organization founded in 1873, contain a wealth of information not only on local geology but also on natural history. Church missions were set up at major posts. In 1875, John Hines of the Church of England established a mission at Sandy Lake (now Hines Lake) some 40 miles southeast of Waskesiu Lake along the Carlton-Green Lake trail. Other missions of the Church of England were in operation at Stanley on the Churchill River north of Lac la Ronge and at Cumberland House (Boon 1962). There is no mention of any missions having been established in the vicinity of Waskesiu or Montreal Lakes during this time. There is reference to the fact that the Natives (Cree) of this area were visited by the ministers from Sandy Lake, Stanley and Cumberland House (Hines 1915: 319).

The changing economic situation of the native peoples of Saskatchewan has been covered in great detail by Ray (1971)
and is directly related to changes in the nature of the fur trade, decline in the traditional resource base of bison, flood of White settlers to central Canada, and the establishment of Indian reserves.

There were also major changes in the boundaries of political and administrative units after 1870, when Rupert's Land became the Northwest Territories. What effect this and the outbreak of Métis militancy of 1870-85 had on the inhabitants or the composition of the population in the area which is today enclosed within Prince Albert National Park is unknown. The Hudson's Bay Company was expanding its interests here for in 1886 (?) a trading post is reported to have been established on Waskesiu Lake to compete with a local independent trader names James Stevenson. The post was abandoned and moved to Montreal Lake in 1892 (Anonymous n.d.: 6). Mention of a Hudson's Bay Company on Red Deer Lake (Waskesiu Lake) is made by McPhillips (1888: 91) who lists the residents of the area, among whom are a Hudson's Bay Company clerk, Charles Carson, and a James Stevenson. The others are Joseph Bird, Samuel snr. Bird, Samuel jr. Bird, J. Bird, George Bird, Benjamin Bird, Patrick Bird, Thomas Bell, Paul Bear, John Boyer, William Henderson, Joseph Laliberty, Baptiste Maresty, John Nelson and J. Saunders.

No direct reference to the exact location or even the existence of either trading establishment could be found. However, two major archival sources are, or will be, available and it is felt that the daily journals of some clerk or missionary may make mention of the posts. These sources are the Hudson's Bay Company archives which are being transferred to Winnipeg, and the journals of the ministers of the Church of England which are available in handwritten form on microfilm. The records of Reverends J. Hines of Sandy Lake and J. A. MacKay of Stanley Mission, and the successor of Reverend
J. A. MacKay, may be especially helpful. [Ed. note: since the time of writing of this report, the establishment of the Hudson's Bay Company Archives in Winnipeg has been completed].

Towards the end of the 19th century and on into the 20th, Prince Albert became a major supervisory headquarters for northern areas. Agriculture and the harvesting of forest products dominated the rural economic scene. In 1927, Prince Albert National Park was created by the transfer of Sturgeon Forest Reserve land to the then Department of the Interior (Anonymous n.d.: 3).
Specific Objectives
The main objectives of the 1973 archaeological survey of Prince Albert National Park are outlined in Section 3 of the contract (Appendix A). The project requirements relating to fieldwork called for a survey and reconnaissance of archaeological sites in the project area; that is, in the area or areas where modification or disturbance of the terrain was expected to occur as a consequence of the improvement of roads and campground facilities within the Park. The contract also specified that endangered sites be salvaged, the impact of proposed developments on archaeological sites be evaluated and recommendations made where development should be avoided, and an assessment of the interpretive value of the archaeological materials be made specifically with regard to the potential they hold in terms of their being developed into interpretive exhibits. These, besides the curatorial and analytical tasks, were the objectives which guided the 1973 survey.

The area covered during the 1973 season could be divided into two major and a number of smaller subdivisions. These are: Elk Trail in its entirety; Kingsmere Lake; Namekus Lake, and Waskesiu Lake, specifically the First Narrows (Figures 7 and 8).

Elk Trail
A complete survey of Elk Trail, including the Fish Lakes
Figure 7. Map of Prince Albert National Park showing the areas that were covered during the 1973 archaeological survey. Note: the estuary of Poplar Creek at the northeast part of Kingsmere Lake, and not the stream flowing into the northwest corner of the lake as indicated in the figure, was surveyed. See the correct location of Site GaNo-106 in Figure 8.
Figure 8. Map of Prince Albert National Park showing the location of all archaeological sites recorded during the 1973 survey. Site FI1N-51 at the southeastern part of Waskesiu Lake is the "Mud Creek Site" located and tested by Forsman in 1971.
road, was undertaken. Attention was directed toward roadsides, exposures within 100 meters of the road and potentially favourable areas such as beaches. Elk Trail is located in the southern part of the Park south and west of Sandy (Halkett) Lake. Its course, almost 45 miles in extent, is confined mainly to the aspen forest/scattered grassland section. In the north it extends into the mixed aspen/spruce/pine forest. Despite the fact that Elk Trail passes near the south shore of Sandy Lake and several lesser lakes and within sight of Rabbit Creek, a thorough search of the road right-of-way, a raised beach at Sandy Lake and the terraces of Rabbit Creek produced only four prehistoric sites. At only one of these, Site FjNo-101, is additional work recommended.

Site FjNm-101
This site is located on the east side of Sandy Lake where Highway 263 has cut through a high till knoll at the eastern entrance to the Sandy Lake campground. Large boulders occur near the top of the remaining part of the hill which had been largely removed through road construction; that which remains was the side of the hill sloping to the east and away from the lake. The concentration of material was found near the south end of an approximately 75 meter long exposure. Sandy Lake is located about 100 meters west of the exposure.

The archaeological materials recovered included two large choppers made of a dark basalt, possibly by the hard hammer percussion method. The larger chopper (Cat. No. FjNm-101/5) is 131 mm long, 111 mm wide and 39 mm thick. It is roughly triangular in outline with signs of unifacial flaking along the three edges. Intentional battering to produce a smoother hand hold, or battering resulting from heavy use, mark two of
the edges. The smaller chopper is more crudely made and shows questionable signs of use. It is 95.5 mm long, 90 mm wide and 29 mm thick. In addition, one reject flake of basalt was found.

Other lithic materials were also recovered; these included 10 quartz flakes struck from at least three separate pebbles; 19 chert flakes and fragments representing at least five and possibly six different pebbles, and one dark brown chalcedony flake. The chert is of the type frequently referred to as Swan River chert (Leonoff 1970). A quartzite pebble with one flake removed was also found.

Interpretations

The suspected destruction of a major portion of the site through past road construction precludes any effective interpretation of it in terms of size, age, economic orientation of its former inhabitants, season of occupation and so forth. Nevertheless, some comments can be made regarding the lithic technology and the choice of location. The lithic material, including the dark chalcedony, is believed to have been locally derived. The shore of Sandy Lake was certainly exploited by hunting groups for its lithic resources (Figure 9). This would indicate that some of the occupation was during a part of the year when snow, ice or high water did not conceal the lithics. The heavy nature of the material, combined with the fact that a large proportion of it was rejected during tool manufacture, and its unpredictable quality, are factors which suggest the beach of Sandy Lake as the most likely source of the material at Site FjNm-101. The fact that the chert has been heat-treated, that is, modified by a process known to most aboriginal groups to render flints, cherts and similar materials more workable, makes it possible to suggest a minimal interval
Figure 9. An important phase in the procurement of raw lithic material to be used for the production of stone tools. Two stone age artisans attempt to remove large flakes from a boulder by striking it with another boulder (from Holmes 1919).
of occupation. In his experiments with the thermal pre-treatment of chert, Mandeville (1973: 189) obtained the desired change within three to seven hours, although others had used an interval of up to 72 hours. It can be stated that since the task of heat-treatment was essential and indeed was performed on the chert, possibly at or close to the site, the minimal duration of occupation was several days. There is evidence that at least two techniques, hard and soft hammer percussion, were employed by the artisans in the domestic production of stone tools (Figures 10-12). One quartz platform flake (see Hlady and Kucera 1971: 206) suggests their use of the soft hammer technique.

Other economic activities carried out at the site can be suggested indirectly and through the use of analogy. No doubt the tasks associated with the procurement of food and shelter called for the production of scraping, cutting and hunting tools of stone, wood and possibly bone. That butchering may have been carried out is suggested by the presence of the two basalt choppers. There is no direct evidence to establish what terrestrial or aquatic foods were favoured, nor is there evidence to suggest the size and nature of the social unit or units which occupied the site. Finally, in the absence of any diagnostic material it is impossible to date the occupation. The lithic technology itself is too general and too widespread, spatially as well as temporally, to be of any help.

Recommendations
No further work is recommended for this site, since most of it appears to have been destroyed during road building.
Figure 10. The hard hammer percussion technique used in roughing out a tool from a cobble or large flake. This technique, which involved the use of a hand-held hammerstone, produced short, broad, thick flakes which display signs of battering on the striking platform. A similar technique, but one in which an antler baton was used, removed longer, narrower and thinner flakes such as those shown in Figure 32. This technique was used in the production of tools of finer workmanship (from Holmes 1919).
Figure 11. A variation of the hard hammer technique used in the finishing of a bifacially flaked stone tool (from Holmes 1919).

Figure 12. A variation of the soft hammer percussion technique used in the manufacture of tools of finer workmanship than those produced by the hard hammer percussion technique (from Holmes 1919).
Site FjNn-101
Site FjNn-101 represents a thin scattering of material found on the surface of a sparsely treed sandy ridge on the east side of Fish Lake road, 2.5 miles north of the South Boundary Road gate. The site is removed from the road by about 200 meters. Twelve quartzite and three chert flakes and fragments comprise the cultural material found.

Interpretations
It appears that what is represented at Site FjNn-101 is a campsite of very short duration and perhaps by a very small group; that is, one or two families or even a group of male hunters. It may be that the site was attractive for occupation because of its well-drained and open aspect. The ridge appears to continue in a north-south direction, so it may have been a popular route of travel.

Recommendations
Because of the sparseness of the material and the fact that it is removed some distance from the road, no further work is recommended for the site.

Site FjNn-102
Site FjNn-102 is a small surface site located 6.8 miles west along the South Boundary Road from the junction of Highway 263. It is situated on the crest of a small, lightly vegetated knoll on the north side of the road. A small pond is visible to the south beyond the Park boundary. The material recovered is limited to only 12 chert flakes, 11 of which are similar to the Swan River chert. Four pebbles appear to be represented.
Also, the colouring and the lustrous appearance indicate that the chert had been heat-treated prior to being worked. The bipolar (Figure 13) and soft hammer techniques were employed in working the material.

Interpretations
As with the previous sites, Site FjNn-102 also represents, in all likelihood, a temporary occupation by a small group of people. It may be that the main occupation was near the body of water that is visible to the south and within a distance of one mile. One striking feature of this site is that no quartz flakes were recovered. It may be that quartz was worked elsewhere, or perhaps the needs of the people were satisfied by the tools produced from the chert. The available sample of material is too small to indicate exclusive preference for chert.

The open aspect of the site, on a sandy knoll which, even in the past, may not have been heavily forested, plus the fact that the working of lithic material took place, imply an occupation of the site at least during the warmer snow-free part of the year. There is no way of determining the age of occupation from the material recovered.

Recommendations
The site is considered to be too small to warrant further attention. Furthermore, it is well removed from the road and hence its destruction is not of major concern.
Figure 13. The bipolar technique. There is ample evidence among the debitage to indicate that this was a popular technique used by prehistoric craftsmen at Site FlNn-6. This technique, as the previously described one, was used in the primary phase of tool manufacture, often to split small cobbles and pebbles of chert and other fine-grained lithic materials. In this technique the pebble is set on a stone anvil and struck with another stone from above. Cores produced by this technique are easily identified by the battered appearance of both ends (from Holmes 1919).
Site FjNo-101
This was the most prolific site found along Elk Trail during the 1973 survey. The site was located 1.2 miles north of the Rabbit Creek crossing. It is situated on a small sandy knoll at the east end of an elongated body of water which is an enlargement of the stream flowing into Hunter's Lake from the west. The present vegetation is one of spruce and jackpine. Lithic material comprising 40 chert, 18 quartz and 1 quartzite flake and flake fragments was recovered along a 50 foot stretch of road where it paralleled the lake front. The soil is a sandy forest podzol. Consequently, the cultural material occurred near the surface, immediately below the leaf litter.

Interpretations
Site FjNo-101 represents a small prehistoric quarry and possible temporary campsite of unknown cultural affiliation. Two and possibly three chert and the same number of quartz cobbles were reduced both by hard and soft hammer techniques. One quartzite platform flake, the product of the soft hammer or billet technique, was recovered. The chert is of the Swan River type and displays the characteristics of having been heat-treated. It is suspected that the lithics were gathered nearby, likely from the shores of the small lake. No features such as dwelling outlines or fireplaces were exposed; however, the fact that stone-working is represented to some degree lends one to postulate that some of the occupation occurred during the snow-free part of the year. Because of the small extent of the site and the sparseness of cultural material, it is possible that the site was occupied by a small band of people comprising several families at most.
Recommendations
This is the only site located along Elk Trail which warrants any testing. It is recommended that several test pits be located in the undisturbed forest between the road and the lake in order that the potential of the site may be properly evaluated. If the cultural material recovered during the 1973 survey is any reflection of the site's potential, then it can be predicted that cultural material will be sparse and limited exclusively to items and features made of lithic materials and possibly to fireplaces.

Summary and Evaluation of the 1973 Elk Trail Survey
The 1973 survey of Elk Trail proved disappointing in terms of locating significant archaeological resources. In potentially important areas such as along Sandy Lake and Rabbit Creek, the survey was extended away from the road so that raised beaches and river terraces could be covered. The results, however, were negative. The four sites located were relatively small. It seems that the potential of the open parkland environment confined the social units to small nomadic bands, probably comprising several families. Because of the lack of any substantial accumulation of cultural debris at any of the sites, it is assumed that they represent campsites of a very temporary nature, the occupants of which possessed a subsistence base oriented towards hunting, gathering, fishing, exploitation of the open parkland for its mammal resources during the summer months, and temporary coalescence into larger social units at ecologically more favourable locales such as the First Narrows at Waskesiu Lake, Montreal Lake or along the Sturgeon or Saskatchewan Rivers. In the absence of any diagnostic material, the age and cultural affiliation of each site remains undetermined.
Recommendations for further work along Elk Trail are made only for Site FjNo-101, where limited testing is called for.

Kingsmere Lake Survey: Site GaNo-106

The survey of Kingsmere Lake was limited to a one-day reconnaissance of the area where Poplar Creek enters Kingsmere Lake. The area was investigated for archaeological resources at the request of Park officials who were concerned with the possibilities of establishing overnight tenting facilities there. Findings and recommendations arising from the survey were presented in a Field Progress Report on June 25, 1973 to the Park Planners. The survey entailed a search on both sides of Poplar Creek away from the stream and paralleling the lake shore for about half a mile and along both sides of the creek upstream for a distance of about 200 meters. An historic site and a prehistoric occupation were located.

The historic site was situated in a clear area on the west side of Poplar Creek at the estuary. The visible historic cultural material comprised metal scraps and cans, as well as boulder features. The latter were in the form of two rock piles, one meter across and in close proximity to each other, and a dirt and rock pile located 15 meters west of the first two. Between these two piles was a flat, rectangular area roughly 6 x 8 meters across. This area was rimmed with large stones and boulders and may represent the foundation or outline and extent of a building. A feature of questionable nature and function was an elevated ridge seven meters long and half a meter wide, located four meters west of the westernmost rock pile.

In addition to these features, there were three small pits located at the base, on the slope, and at the crest of the ridge (see Gryba 1973). No surface collecting or testing at
the site were undertaken. Besides the metal scraps and boulder outlines, there were rocks occurring throughout the site, providing evidence that very little soil deposition occurred there—a phenomenon typical of a boreal forest environment (the site is surrounded on three sides by boreal forest vegetation).

The prehistoric component occurred on both sides of Poplar Creek upstream from the historic site where a bulldozed road led across Poplar Creek west to the ranger station. On the west side of the stream on a flat terrace, lithic material comprising 21 quartz flakes and fragments was found extending about 10 meters away from the edge of the terrace. At least three varieties of quartz had been worked, possibly by the hard hammer and bipolar techniques.

On the east side of the stream, the material recovered showed greater variation. This included two crude chert bifaces: Cat. No. GaNo-106/1, having a length of 84.5 mm, a width of 62.5 mm and a thickness of 33 mm; Cat. No. GaNo-106/2, having a length of 30 mm, a width of 21.5 mm and a thickness of 7 mm; 6 quartz flakes and flake fragments, and 36 chert flakes and fragments. The total material is represented by two varieties of quartz and two of chert. The evidence suggests that both hard hammer and bipolar techniques had been used in the production of stone tools.

Interpretations
There is evidence for two different phases of human occupation near the Poplar Creek estuary—a relatively recent historic occupation and a prehistoric one of undetermined age. The oral record has it that a store had been maintained in this area during the early part of this century. There are no remaining traces of wood which belonged to part of the building
superstructure. The evidence which suggests that this is the site of the store takes the form of scraps of metal and tin cans as well as features of stone which may formerly have been connected to a building. It is expected that pertinent information regarding the period of occupation of the store, its owner, and so on will be compiled through a separate project being carried out by a graduate student of Anthropology at the University of Saskatchewan.

With respect to the prehistoric occupation, the most interesting feature is its situation. It is removed upstream some distance away from the lake shore. It could be that the prehistoric occupants located their campsite there in order to exploit both the lithic and the ichthyofaunal resources of Poplar Creek. If so, then one could assume that the site was occupied during the spring. It is possible that other factors such as close proximity to a water supply or to floral resources were important in the selection of this particular site. No features were observed; however, some permanency of occupation is indicated by the fact that the chert had been heat-treated to improve its texture. It is impossible to suggest an age for the component, nor is it possible to determine the number of components present because only lithic material was recovered, none of which is diagnostic.

Recommendations

Any plans to develop the Poplar Creek estuary site must take into account the value placed by the Park Planners upon the historic site. Basic to this evaluation is the concept of an "historic" site as defined by the Park personnel. Does it constitute a building or building site which was occupied within the present century? Lacking the critical information regarding the year of construction, period of occupation,
proprietor, etc., it is difficult to evaluate the importance of this site. It probably played a vital role in the Euro-
canadian/Native interaction of this area, and it is therefore recommended that an effort be made to collect from living informants, and what written sources exist, the history relating to the former store at Poplar Creek.

It was observed at this site and at most other sites within the Park that the archaeological material was found on or near the surface. This is a prevalent characteristic of the boreal forest environment where sedimentation is negligible. It is obvious that at Site GaNo-106, where the artifacts are near or on the surface and, furthermore, comprise features made of stones and boulders which are easily moved and displaced, heavy use of the site (such as might be expected should it be developed into a tenting ground) would lead to deterioration and destruction of those existing artifacts and features. It is therefore recommended that the decision as to whether or not to proceed with the development of this site be postponed until after the recommendation underlined above has been met and its results evaluated.

No further work is recommended for the prehistoric site. It should, nevertheless, be kept in mind that similar occurrences of Native materials may occur at other spots along Poplar Creek.

Namekus Lake: Site FlNm-102
Namekus Lake was not originally intended to be included in the 1973 survey. However, the results of several cursory weekend trips to the area are nonetheless discussed, since it presents a contribution to the total archaeological picture of Prince Albert National Park. Only the west and south shores of the lake from the campground to the mouth of the stream flowing
between Namekus and Trappers Lakes were checked. A small workshop of grey Swan River chert plus several flakes were found along the road leading to the campground from the north. The material was found on a low abandoned beach ridge of Namekus Lake. A total of 26 chert and 12 quartz flakes was recovered. There is no evidence of platform preparation on any of the flakes that would suggest the use of a soft hammer technique. One chert flake possesses the attributes created by the application of bipolar percussion.

South of the campground, cultural material was sparsely scattered along the active beach. Nine quartz, one quartzite and one chert flake, plus a water-worn chert fragment, represent the entire collection of material from this part of the lake.

Interpretations
A similar situation appears to have existed at Namekus Lake as at Sandy Lake; that is, these lakes do not seem to have been intensively occupied by prehistoric human groups. It may be, on the one hand, that this deficiency of archaeological resources is the result of the sampling technique which has failed to locate more prolific areas if such do in fact exist at either lake. On the other hand, the preliminary survey may well reflect the true situation in which the small lakes were less attractive than the larger lakes of the area. The latter, such as Waskesiu, Kingsmere, Crean, Bittern or Montreal were perhaps more attractive focal points at which families and bands converged on a seasonal basis. The relatively prolific archaeological site at the First Narrows on Waskesiu Lake, FlNn-6, seems to suggest that this was the case.

The archaeological material found at Namekus Lake was comprised entirely of lithics. Undoubtedly the lithic
resources of the lake shores were exploited during the snow- and ice-free seasons. The material is too poorly represented to draw any conclusions regarding cultural affiliation or age. Again, the sparse evidence points to the conclusion that small groups, at a band level of integration, frequented Namekus Lake. There is no direct evidence to indicate what their specific subsistence activities were, but a general hunting-gathering-fishing subsistence economy would certainly have applied.

Recommendations
Because of the dispersed and sparse nature of the cultural material along the west shore, no further work is recommended there. If the Park boundary is extended to include the east shore of Namekus Lake where there has been some public development, then it is recommended that a survey of favourable locations be made.

Waskesiu Lake Survey
The 1973 archaeological investigations of Waskesiu Lake can be divided into four sections, each one covering a particular part of the lake. These are: Waskesiu Lake north of the First Narrows; South Bay-Clare point; the peninsula across from the First Narrows, and the major site itself, the Narrows Site (F1Nn-6).

Waskesiu Lake north of the First Narrows
Two days were spent surveying and recording sites along the south shore of Waskesiu Lake north of the First Narrows. The shore and likely looking areas inland away from the active
beach along the north end of the lake to the west side of the Kingsmere River estuary were examined. Ten small sites, most occurring on a high bluff overlooking the lake, were located and recorded. They are:

- FLNn-101 2 chert flakes.
- FLNo-101 64 quartz flakes, 2 quartzite flakes, 1 granite flake, and 2 chert flakes.
- FLNo-102 2 quartz and 3 quartzite flakes, all of which are waterworn.
- FLNo-103 1 quartz core.
- FLNo-104 10 quartz flakes.
- GaNo-101 6 waterworn quartz flakes, 1 quartzite flake.
- GaNo-102 7 quartz flakes and 11 chert flakes. At least 5 colours of chert are represented.
- GaNo-103 6 quartz and 2 chert flakes.
- GaNo-104 12 quartz flakes, 1 quartzite and 1 chert flake; all are waterworn.
- GaNo-105 1 quartz flake and 1 side-notched projectile point of pinkish Swan River chert. The point was pressure flaked bifacially; the flake scars all but obliterated the original flake surface on one face and completely so on the other. The lateral edges and the base are convex. In addition, the base shows signs of heavy grinding. The dimensions of the point are: length 33 mm, width 21 mm, thickness 4 mm. It is provisionally identified as a Prairie Side-Notched Point (Kehoe 1966a: 833) (see Figure 14).
Figure 14. Artifacts from the 1973 archaeological survey of Waskesiu Lake. From left to right: fragment of a bifacially flaked chert knife and a fragmentary quartz projectile point from Site FlNm-103, a chert side notched point from Site GaNo-105, and the base of a concave based point from Site FlNn-103.
South Bay-Clare Point: Site FlNm-101
A casual Sunday canoe trip on Waskesiu Lake from South Bay of
Clare Point led to the discovery of two small sites situated
close to each other on high bluffs overlooking South Bay.
They are located halfway up the peninsula from the Mud Creek
outlet to the north tip of Clare Point. The sites are separa­
ted from one another by less than 100 meters and may in fact
be considered one site. The environment is mixed spruce-pine
forest. This has led to little soil deposition on the sandy
soil. Cultural material was exposed on the surface, particu­
larly on game paths and where the bluffs were undergoing
severe slumping due to wave erosion.

The northernmost exposure proved to be the more productive
of the two. There were two small rock piles, less than a
meter across, which probably represent fireplaces. The
cultural material collected comprised the following: 1) a
fragmented quartz side-notched projectile point (Cat. No.
FlNm-101/1) with one corner and the tip missing; its dimensions
are 25.5 mm long, 16.5 mm wide and 5.5 mm thick; 2) the tip of
an elongated, bifacially flaked chert knife (?) (Cat. No.
FlNm-101/6) with the following dimensions: length 50.5 mm,
width 22 mm, thickness 8 mm; 3) a unilaterally retouched chert
flake (Cat. No. FlNm-101/5); 4) 4 quartzite flakes and frag­
ments; 5) 2 basalt fragments; 6) 26 chert flakes and fragments;
7) 6 small red jasper pressure flakes; 8) 46 quartz flakes
and fragments, and 9) 2 quartz pebbles showing bipolar
battering (the point and knife are shown in Figure 14).

The southernmost exposure was less prolific in terms of
quantity of material or artifacts. Material was limited
exclusively to workshop debris. It consisted of a large flake
of greenstone schist, 4 chert flakes, 42 quartz flakes and
fragments, and 1 bipolar core of quartz.
Interpretations

Site FlNn-101 probably represents a seasonal occupation by a small group of people. At the northernmost locality, two possible hearths were observed; if these are contemporaneous, then we can assume that it was either occupied at the very least by two social units, such as two families, or that the two were functionally distinct. In other words, one may have been used for cooking while the other may have served a different purpose. Contemporaneity between the two hearths would be difficult to verify.

A major activity, based on the evidence at hand, was the working of stone for the production of tools (Figures 15-23). The waste products of the reduction of at least 9 types of quartz and 7 of chert were recovered from the north exposure, while a lesser diversity of material was recovered from the south exposure. Here, at least 5 quartz and 3 chert cobbles had been worked. Heat-alteration of the chert at both places had been carried out. The evidence for this is the fineness of texture and added lustre seen on the chipping detritus. These attributes are seldom shared by unaltered materials. There is evidence that four techniques—bipolar, hard hammer and soft hammer percussion, and pressure—were employed by the artisans in the working of the lithic material.

No bone was recovered to suggest what the main subsistence activities were; however, at the Mud Creek Site (FlNn-51), located at the south end of South Bay, Forsman (1971: 11) has recovered bird and mammal faunal remains from his excavations. An occupation during open water is suggested by the recovered material. It is possible that the former inhabitants of Site FlNn-101 pursued a similar hunting-fishing-gathering subsistence economy. A word of caution must be introduced regarding the making of assumptions as to the season of occupation of Site FlNn-101 on the basis of the presence of lithic material and
Figure 15. Removing a flake from a core by means of indirect percussion with the use of an antler punch and a hammer. The right hand illustration shows how flakes could have been removed by striking a hand-held cobble against another stone (from Holmes 1919).
Figure 16. The pressure technique used in the finishing of the edge of a projectile point. Flakes removed by the pressure technique have many of the attributes that flakes removed by the soft hammer percussion technique have but, in comparison, the former are considerably smaller, being in the order of around 4 mm wide. The occurrence of tiny flakes and the fine workmanship displayed by some of the tools found during the 1973 survey indicate that the pressure technique was a popular one used by the past inhabitants of P.A.N.P. (from Holmes 1919).

Figure 17. The artisan employing the pressure technique to retouch a mounted projectile point by means of a bone or antler flaker (from Holmes 1919).
Figure 18. Stone wedge used in splitting wood and bone in the process of tool production. Wedges used for this function acquire bipolar battering similar to that seen on the bipolar cores (from Semenov 1964).

Figure 19. A bone or a wooden punch and a wooden mallet used in the removal of a flake by the indirect percussion technique (from Holmes 1919).
Figure 20. Method of grasping a small, unhafted stone knife. Arrows mark the probable direction in which the hand and the knife moved. Many stone tools frequently develop a polish through use. Functional experimentation and microscopic examination are important aids to archaeologists who are concerned with interpreting the function of stone tools. From this they can arrive at interpretations of the activities performed at the site by its former occupants (from Semenov 1964).

Figure 21. A probable method of grasping and using an end scraper for the processing of an animal hide. Microscopic examination of the wear patterns was used to determine one possible function of this form of tool (from Semenov 1964).
Figure 22. A hand-held and a hafted means of using a stone drill. Bow drills were also common items of the total technology of many prehistoric peoples. One chert drill occurred in the cellar fill at Site FlNn-6, Locality 4 (from Semenov 1964).

Figure 23. Pressure retouching a tool after first firmly securing it in a grooved piece of wood or antler (from Semenov 1964).
the absence of seasonal indicators such as bird or other faunal remains. A suspicion long held by the writer and finally confirmed last winter is that the procurement of raw materials is not restricted to the snow-free season. It was noticed that during the winter, high cut-banks formed by wave action tended to remain exposed so that they could have provided a source for lithic materials on a year-round basis. Some lake cut-banks may have been more accessible during the winter months when the lake waters had frozen over. The argument that would favour a spring, summer or fall occupation at FlNn-101 is the need for an adequate subsistence base. Models and evidence for transhumance and changing seasonal subsistence bases of the historic Native inhabitants of central Canada will be dealt with more fully in a later section.

Strong evidence upon which to base a firm statement regarding the date of the occupation is lacking. The one quartz projectile point vaguely resembles the Plains Side-Notched type that was in vogue on the plains in late prehistoric times, ca. post A.D. 1590 (Kehoe 1966a: 833). On the other hand, the indented base of the point suggests that it may belong to the Oxbow tradition and, hence, a much earlier time level, about 2500 B.C. A half mile to the south, Forsman recovered pottery at his Mud Creek Site, FlNn-51. This would indicate late prehistoric occupation of the site. However, a Hanna-like projectile point recovered from the same site may reflect the fact that it is a multi-component site. That is, this spot had been occupied several times during the past (Forsman's assertion that microblades were present at FlNn-51 is without support, since what he has identified as microblades appear simply to be the products of bipolar percussion and pressure flaking).
Recommendations

Site FlNn-101 is the only prehistoric site, aside from FlNn-6, located at Waskesiu Lake in 1973 for which further work is recommended. There are several reasons for making this recommendation. First of all, the site is small yet productive enough to contain possible data critical to any interpretive reconstruction of the seasonal economic cycle, social structure and other aspects of former Native groups of this area. It appears to represent a seasonal (probably summer-time) adaptation of a small social group to the exploitable resources of the South Bay-Clare Point area given a hunting-gathering-fishing level of subsistence and technological development. In addition, the fire hearths (if that is what the rock piles represent) might contain charcoal which could be used to date the period of occupation. These factors are vital to any meaningful interpretation of the human history of Prince Albert National Park.

From the data collected in 1971, it appears that Forsman's Mud Creek Site, FlNn-51, which lies only half a mile to the south near the Mud Creek estuary, could equally, if not better, contribute towards this sort of interpretation. It did contain a quantity of well preserved faunal (bird and fish) remains which, besides contributing information on the subsistence economy, could provide information on season of occupation.

Both sites are sufficiently removed from any area of concentrated human activity, road construction, or public facilities development (ongoing or projected). This being the case, there is no great pressure for any immediate investigation of these sites; their development at the hands of archaeologists could be incorporated into a general, not salvage, program which, it is anticipated, will become part of the total Park program in the future. There are alternative
ways in which a site that is not faced with destruction through non-archaeological development can be excavated and developed than is the case with one which is threatened with destruction or which has been partially destroyed by road building or similar activity. What form of development should be brought to bear upon these two sites will depend on the priorities and problems which an archaeological interpretive program, once initiated, would generate.

Peninsula of the First Narrows
One of the objectives of the 1973 season was to test the suspected site of the independent fur trader's establishment that was reported by Park officials to have been located on the peninsula across the lake from the First Narrows Site, FLNn-6. The site is situated on the crest of a small sandy ridge on the north shore of Waskesiu Lake and on the north side of the peninsula that forms the First Narrows. Surficial indications are represented by the remains of a log cabin which is in an advanced stage of decay. There had been some round nails used in the construction of this building. The front of the cabin, in the area between the lake shore and the building, was littered with bone fragments, tin cans and fragments of crockery.

Three test pits were located directly in front (on the west side) of the cabin, one north of the path leading to the door and two south of the path near the southwest corner of the building. In addition, two small trenches, 10 cm x 100 cm and 10 cm, were opened in the cleared area adjoining the cabin on the south. This area may have accommodated a lean-to portion of the cabin.

Artifacts relating to prehistoric Native and the historic Eurocanadian-Native phases of occupation of this site were
recovered from the surface and the excavations. These are presented according to provenience in table form (Table 1).
The prehistoric material was limited to 6 quartz flakes, 3 chert flakes and the base of a concave-based chert point. The dimensions of this fragmentary point are: length 19 mm, width 22 mm, thickness 4 mm. The maximum width and thickness dimensions were not affected by the fact that only the basal section is represented (Figure 14).

Historic material was better represented. Only 2 large square nails (Cat. No. FlNn-103/12 and FlNn-103/13) can without any doubt be assigned to the phase of habitation which saw the operation of a trading post here. The nails are tapering with rounded rectangular heads and upper shanks. FlNn-103/12 has the following dimensions: length 76.5 mm, width (below head) 5 mm, thickness (below head) 3.5 mm; FlNn-103/13 is 76 mm long, has a width of 5.5 mm and a thickness of 3.5 mm. Both are slightly bent, probably from use. The state of preservation of both specimens is much better than that of the square nails encountered across the lake at the Hudson's Bay Company store site.

The litter encountered in front of the cabin, both inside and beyond the test pits, is believed to belong to a fairly recent period of occupation, at least post 1900, by a squatter or trapper. It is suspected that the existing cabin remains are those of a structure built upon the ruins of a former cabin. A total of 108 small round nails, a quantity of fish remains, bird and cut mammal bones, 7 pieces of wire, 39 crockery fragments apparently from a jug measuring 176 mm in diameter, a tin can, a plain tin can lid, a tin lid from a Red Rose coffee container, a "Dominion" 22-caliber cartridge case, a portion of a spent 410-12 m/m Peters shotgun shell and a spent 32-caliber S+W cartridge were recovered.
Table 1. Site FlNn-103: the Narrows Peninsula.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
</tr>
</thead>
</table>
| Surface | 1 chert point base (FlNn-103/1)
 | 1 tin can (FlNn-103/28)
 | 39 crockery fragments
 | (FlNn-103/29)
 | 65 round nails (FlNn-103/4)
 | 2 wire frags. (FlNn-103/5)
 | 1 tin can cover (FlNn-103/11)
 | fish remains (FlNn-103/6,7,10)
 | mammal bone frags. (FlNn-103/8)
 | bird bone frags. (FlNn-103/9) |
| Test Pit #2 | 0-5 cm below surface
 | 2 square nails (FlNn-103/12,13)
 | 1 22 cal. cartridge casing
 | (FlNn-103/14)
 | 1 410 gauge shot gun cartridge casing (FlNn-103/15)
 | 1 32 cal. cartridge casing
 | (FlNn-103/22)
 | 43 round nails (FlNn-103/17,24)
 | 5 wire scraps (FlNn-103/18)
 | bone scraps (FlNn-103/19)
 | fish remains (FlNn-103/21,23)
 | 1 tin can cover (FlNn-103/16) |
| Test Pit #3 | 0-8 cm below surface
 | 1 chert point base (FlNn-103/1)
| | 1 tin can (FlNn-103/28)
 | 39 crockery fragments
 | (FlNn-103/29)
| | 65 round nails (FlNn-103/4)
| | 2 wire frags. (FlNn-103/5)
| | 1 tin can cover (FlNn-103/11)
| | fish remains (FlNn-103/6,7,10)
| | mammal bone frags. (FlNn-103/8)
| | bird bone frags. (FlNn-103/9)
| | 2 square nails (FlNn-103/12,13)
| | 1 22 cal. cartridge casing
| | (FlNn-103/14)
| | 1 410 gauge shot gun cartridge casing (FlNn-103/15)
| | 1 32 cal. cartridge casing
| | (FlNn-103/22)
| | 43 round nails (FlNn-103/17,24)
| | 5 wire scraps (FlNn-103/18)
| | bone scraps (FlNn-103/19)
| | fish remains (FlNn-103/21,23)
| | 1 tin can cover (FlNn-103/16) |

<table>
<thead>
<tr>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Interpretation

Site FLNN-103 contains evidence of occupation by several culturally distinct groups, each one oriented toward a different exploitative pattern. A thin scattering of quartz and chert flakes provides evidence for prehistoric use of this spot. No features were observed; the sparseness of the material indicates a very temporary occupation at best. In terms of the date of Native occupation, little can be said aside from the fact that this locale could possibly have been attractive for camping throughout the past 10,000 years. The concave-based projectile point is not a good indicator of cultural or temporal association. It may be late prehistoric or it may be of Oxbow age.

Two square nails found in test pit No. 3 in front of the southwest corner of the visible cabin remains and faint traces of floor (?) planking uncovered in a trench in a clearing adjacent to the south end of the cabin were the only clues suggesting that an earlier building had been located here. It may have belonged to the independent trader who operated a store prior to and during the 1880s when the Hudson’s Bay Company established a competing post on the south side of the Narrows. According to the Park Provisional Master Plan (Anonymous n.d.: 6), the free trader’s name was Stevenson. McPhillis (1888: 91) lists a James Stevenson as a resident of Red Deer (Waskesiu) Lake. From the point of view of a trader, this site offered certain advantages. The Narrows in general served to channel both water and overland traffic. Equally important is the fact that the small knoll on which FLNN-103 is situated offers a good view of the north end of Waskesiu Lake, an important consideration for someone who was interested in traffic moving southeast from Kingsmere Lake.

There is overwhelming evidence that the cabin remains visible above ground are those of a structure which post-dates
the trader's cabin, and that all that probably remains of the trader's original cabin are the square nails and maybe a few rotting floorboards. At the south end of the building, what appears to have been floorboards oriented longitudinally and parallel to the long axis of the cabin (that is, north-south) were uncovered in two narrow trenches. The boards (?) are now in an advanced state of decay. Little is known of the rate of biochemical processes operating in this section of the boreal forest to suggest how old the wood really is. It may belong to the period of the current cabin occupation or may predate it.

Nevertheless, the round nails and the litter in front of the cabin, which include tin cans of quite recent vintage (Red Rose coffee), point to the obvious fact that the cabin was recently occupied. Some of the round nails came from an ash heap which was located just outside the door but off the path and in front of the cabin. One would suspect that a trader would have attempted to present a more respectable yard than the degraded appearance which the proliferation of garbage in front of the cabin tends to convey. Whether there was continuous occupation of this site since the time that the trader became established up until the trapper or squatter moved in (or the decline and abandonment of the use of this site as a store) is impossible to suggest in the absence of any documentation.

Additional support for the suggestion that there were at least two phases of Eurocanadian occupation of Site FlNn-103 by different persons derives from the fact that all three cartridge cases found differ from one another.

Recommendations
The Provisional Master Plan for Prince Albert National Park
calls for the establishment of a ferry service and the development of a road across the Narrows peninsula so that the public would have the opportunity of making a circular drive around the lower (southeastern) half of Waskesiu Lake. If these plans are carried out, and since it would give access to the public to both sides of the First Narrows, whether by their own effort or through organized interpretive tours, it is recommended that the development of Site FlNn-103 (the independent trapper's cabin) be planned in conjunction with the development of Site FlNn-6 on the south side of the Narrows.

In dealing with the prehistoric components at both sites (which at FlNn-6 is strongly represented while at FlNn-103 the evidence for same is minimal), the approach towards development taken could emphasize how minor ecological differences, location and so on allowed for different kinds of environmental adaptation at both sites by prehistoric populations. At FlNn-6, the evidence suggests more permanent or repeated occupation by larger groups of people, while at FlNn-103 a very temporary situation is suggested. Here, it appears that one or several short stays by a small group of people were the case.

The historic aspects of the two sites, that is, the Hudson's Bay Company store at FlNn-6 and the independent trader's cabin at FlNn-103, offer equally interesting opportunities for the interpretation of the human history of the First Narrows area. Emphasis could be placed on the competitive nature of the fur trade and the strategies used by both parties in their efforts to maximize their gains. For example, the independent trader occupied a spot from which the lake north of the Narrows could be observed, while the Hudson's Bay Company, which became established here second, occupied a strategic location which provided a view of the lake south of the Narrows. For both parties, the Narrows played an important role in channelling overland and water traffic. The role of the Native people in
the fur trade should not be ignored in the interpretation of this phase of human history.

One of the obvious problems in the historic fur trade scene involves the kind of data that are required for this task but which are not accessible archaeologically. It is doubtful whether any superstructure of the trader's cabin remains or even whether the floor planking (?) exposed at the south end of the existing cabin could be associated with the period of the trader's occupancy here. One possible strategy is to excavate a portion inside of, and to the north outside of and adjacent to, the existing cabin; the purpose being to check for the existence of any previous cabin structures, foundation, outlines, etc. or artifacts which would support the belief that this is indeed the location of the trader's cabin.

Since any adequate reconstruction of the history of the Narrows area during the 1880s (that is, the time when both fur trade ventures were in operation) requires support in the form of written data, it is strongly recommended that a thorough check be made of the Church of England and Hudson's Bay Company records for their involvement in this area and specific time interval. These records are accessible in Winnipeg at the Hudson's Bay Company Archives and Provincial Archives.

The two major factors which will influence the development planning of FlNn-103 are: 1) the acceptance of the plans to proceed with the circular drive scheme around the lower end of Waskesiu Lake, and 2) the quality and quantity of data that further archaeological testing and archival research can bring to light. As was mentioned in the 1973 Preliminary Report for Prince Albert National Park, the wooden elements of this site are undergoing rapid deterioration due to the active biochemical processes of the Boreal Forest environment. What is crucial now is that the data which remain at the site,
specifically building outline remains, be recorded before the natural processes eliminate all traces of them. It is therefore recommended that further testing of the cabin remains be carried out to determine if, and in what form, any pre-cabin (i.e., before the existing cabin) remains are present and, if they are, that they be sufficiently excavated to provide relevant information regarding the cabin size and mode of construction. That is, as much data as possible should be obtained so that the scene during the 1880s can be reconstructed at the site, on paper, or elsewhere, as accurately as the evidence will allow.

The Narrows Site: FlNn-6

Introduction
The Narrows Site, FlNn-6, is the most important site located to date within Prince Albert National Park. It was first tested in 1971 by Forsman, who excavated eleven 1 x 1 meter test squares on the main terrace west of the highway leading to the Narrows campgrounds. In 1973, the writer expanded the testing of the main terrace on the east, or lake, side of the main highway (Figure 24) and tested one of the abandoned storm beaches below this terrace. This section of the report will present the findings of these excavations and relationships of the findings in terms of the local broader settings. An evaluation of this site with respect to its development potential, and recommendations on the form of archaeological development to which the site would be best suited, are dealt with in separate sections.

Site FlNn-6 is located on the south side of the First Narrows of Waskesiu Lake, on and around the site of the former
Figure 24. View of the area of the five abandoned storm beaches at Site FlNn-6. The author is working in Test Pit #3, Locality 8, which is on the highest abandoned beach. Visible in the background is Waskesiu Lake. Also visible is the paved service road which parallels the present lake shore. The photo, looking towards the northeast, was taken from the highway on the main terrace.
bungalow camp, the buildings of which were moved outside of the Park boundaries in the spring of 1973. Several geomorphic features give topographical diversity to the area. The lake occupies a former glacial spillway which directed meltwaters southward through the Spruce River system. Varved and stratified sands and clays, exposed along the lakeshore about 100 meters east of the site, indicate that an interval of higher water existed during the early post-Pleistocene. A small unnamed stream flows into Waskesiu Lake at FlNn-6 and it is believed that the main terrace, a flat bench three meters above the current lake level, comprises early post-Pleistocene deltaic deposits of this stream. Below this terrace, between it and the lake, occur a series of abandoned, narrow storm beaches, each of which is less than ten meters in width and low in profile. The crest of the beach nearest the terrace is only half a meter above the current lake level. This part of the site is poorly drained; during the summer of 1973 bodies of water lay between the beach ridges.

West and southward the terrace is interrupted by a high till ridge which rises over ten meters above the terrace. Beyond it the topography is generally hilly, reflecting the morainic aspect of the Waskesiu Hills. This ridge and the main terrace, in contrast to the area of abandoned beaches, are sandy and well drained.

The vegetation reflects the mixed forest character of the region; pine, spruce, aspen and birch are the dominant large trees. Blueberry plants were observed on the better drained, sandy areas.

Site FlNn-6 received the greater portion of the time spent on the 1973 archaeological survey of the Park. Two main factors accounted for the concentration of effort at this site. First of all, there existed the possibility that the road leading to the Narrows campgrounds would be improved and
that, upon removal of the tourist cabins of the bungalow camp to a spot outside the Park, the former site of the cabins would be restored and converted into a picnic area. Both of these projects would have affected the site, as the road cuts directly through the site and the cabins had been built upon some of the more prolific parts of the site, both on and below the main terrace. Pressure for the investigation and objective evaluation of this archaeological site also arose from the fact that the Park officials and planners expressed a concern for its development possibilities so that it could be incorporated into the general interpretive program of the Park.

The archaeological investigations consisted of: a phase of reconnaissance during which a thorough surface survey was made and areas of concentrations of cultural material were located on a map, and two major phases of testing. Field Progress Reports were prepared outlining to the Park authorities the findings of each phase of work and recommendations on what direction the next phase should assume. The field reports, together with informal on-site talks, provided the bilateral discussions between the chief investigator and the Park authorities on most aspects of the investigations, and served to direct the course of the summer's work.

As was implied above, factors relating to the salvage and developmental aspects of Site FLNn-6, plus the fact that some of the site had been disturbed by previous road building and establishment of cabin facilities, tended to bias the collection of the data. Because of these restrictions and constraints, the sampling was not conducted in a random fashion. Hence, the data are not to be construed as being necessarily representative of each locality or of the entire site. Attention was directed to three localities within the site, Localities 4, 7 and 8. The reasons underlying the selection of any one locality differed from those which determined the selection of either of the other two. These
reasons will be clearly stated as the findings of the test excavations from each locality are dealt with.

Reconnaissance
In June of 1973 several days were spent at FlNn-6. A thorough search of the area involved the recording of the occurrence of individual finds and scatterings of artifacts, and a determination of the areal extent of the site. The locations of artifact occurrences were recorded accurately and plotted on a map (Figure 25).

Traces of past human activities were discovered on the three main geomorphic features which were referred to previously: 1) the main terrace comprising a flat, sandy bench which expanded in width to the northwest and which stood about three meters above the current lake level; 2) a flat area about 50 to 80 meters wide and containing five low, abandoned storm beaches occurring between the main terrace and Waskesiu Lake, and 3) a high till ridge rising above the terrace and merging with the rolling terrain west and south from Waskesiu Lake (Figure 26).

On the main terrace the following localities were recorded:

Locality 1: On the south side of the road which branches off from the main highway and which leads to the front of the store near the beach. One white quartz core was found near the pavement.

Locality 2: On the east side of the main highway, ten meters north of the junction of the road leading to the Narrows store (McLachan's store). Two quartz flakes were recovered.

Locality 3: One large percussion flake of purplish quartzite was recovered along a road cut on the west side
Figure 25. Sketch map of the Narrows Site, FlNNn-6, showing the main geomorphic features and the locations of Localities 4, 7 and 8.
Figure 26. Contour map of the Narrows Site, FlNn-6, showing Localities 1 to 10 and the location of the 1973 test pits. Note the relatively flat expanse of the main terrace as indicated by contour lines. (Map adapted from one drawn by J.A. Flatt in 1948 for the Dept. of Mines and Resources, Lands and Development Branch).
of the highway about 75 meters south of the road leading to the gravel pit.

Locality 4: This is the southern part of the cleared section of the main terrace on which three cabins of the bungalow cabin complex had been situated. The material gathered includes a collection from the entire area and separate collections made from the sites of the central and northernmost cabins. The general collection consisted of 1 rodent mandible, 4 chert flakes, 1 chert uniface, 4 quartzite unifaces, 1 quartz primary flake, 61 quartz flakes and 12 quartzite flakes.

The site of the middle cabin yielded 2 square nails, 1 fragment of an iron metal band, 2 chert flakes, 1 "jaspery" chert flake, 2 primary quartzite flakes, 6 quartzite flakes, 1 flake of a light green igneous rock and 11 quartz flakes.

On the site of the northernmost cabin was found 1 quartz flake and 2 pieces of modern (historic) ceramic.

Locality 7: This is the road cut into the main terrace between the stream and the road leading to the gravel pit. Also included as part of Locality 7 is Forsman's 1971 test area. The surface collection yielded 1 flake of Swan River chert, 4 quartzite flakes, 1 quartz core, 1 possible quartz uniface and 13 quartz flakes.

West of the main highway and rising about 10 meters above the main terrace occurred a north-south trending till ridge. Near the site the ridge had been exploited as a source of road fill. Lithic material was found eroding from the crest of the ridge along the southern rim of this gravel pit and on a backdirt pile within the borrow pit.

The two localities recorded with this geomorphic feature are:
Locality 5: Comprising the material eroding along the southern rim of the pit. The material consisted of 6 quartz flakes, 3 quartz primary flakes (2 of which may have been utilized), 2 quartz side scrapers and 1 quartz pebble.

Locality 6: This is a dirt pile which had been deposited on the floor of the borrow pit. The original source of the dirt is unknown. Occurring in the dirt were 2 quartz flakes, 1 primary quartz flake and a quartz pebble. Some scatterings of material were also discovered on the abandoned and active beaches located between the main terrace and Waskesiu Lake. These were Localities 8, 9, 10 and 11.

Locality 8: This is the area in front and north of the power house. One square iron nail was found by Manley MacLachan and presented to the writer. In the immediate vicinity, on the fifth (i.e., the highest) storm beach, testing yielded an unexpected quantity of lithic material. This will be dealt with in a later section.

Locality 10: On the second beach, 30 meters northeast of the store, a small quantity of material was recovered consisting of a bone fragment, 27 quartz flakes, 4 quartz fragments and a possible worked quartz flake.

Locality 11: Locality 11 represents the active beach of Waskesiu Lake in front of the Narrows bungalow cabin site. The material had obviously been moved by wave action. Four white quartz flakes and a worked (?) waterworn fragment of reddish quartz were collected.

A summary of surface finds from PLNn-6 is presented in Table 2.
Table 2. Site FlNn-6: Surface Material.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>1</td>
<td>1 quartz core (1500)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>nil</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>nil</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>nil</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>nil</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1 quartz core (1512)</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>1 retouched quartz flake (1514)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1 bone fragment (1515)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1 "possible" worked flake (1516)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1 waterworn pink chert flake (1520)</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>nil</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 82 4 7
Testing
Given these scattered occurrences of material, in light of the factors outlined above which related to the salvage and developmental aspects of the site it was recommended that two of the Localities, 4 and 8, be tested. Locality 4 was selected because it appeared from the reconnaissance that it was the most prolific part of the entire site, containing traces of both prehistoric and historic occupation. It was felt that this locality would contribute most towards the interpretation of the human history, both Native and White, of the Narrows area. Equally important was the fact that the main highway in the vicinity of Locality 4 cut into the base of the large till ridge. Any efforts to widen the road here would have necessitated expanding the east side of the road towards the area where artifact concentration was the greatest.

The rationale for selecting Locality 8 for testing was outlined in the Field Progress Reports. It was noticed early that the main terrace lacked any significant depth of soil deposit that would serve to separate the various prehistoric cultural components from each other. It was therefore recommended that one of the higher abandoned storm beaches, either the 4th or 5th, be tested since these were the oldest of the series of abandoned storm beaches at FlNn-6 and it was expected that any cultural material found incorporated in them would be older than that which might be found on the surface of these beaches or associated in some way with the lower ones. It was felt that this strategy might be useful in developing a local sequence of human occupation.

In the first phase of testing, three pits were excavated in Locality 4 and a similar number excavated in Locality 8. The material recovered was analyzed and this, together with the material secured by Forsman in 1971, provided a basis for an evaluation of the salvage and developmental aspects of
FLNn-6. A course of action which would make use of both in situ and excavated material was proposed for the archaeological development of this site. Further testing was recommended in Locality 4 in an effort to locate the historic Hudson's Bay Company establishment. Before this objective was realized, 16 square meters of area were exposed or totally excavated. This included Squares 1S 21E, 5S 21E, 8S 16E, 8S 20E E 1/2, 8S 21 E W 1/2, and 8S 22E. In Locality 7, three squares (using Forsman's 1971 designations)—38N 3W, 39N 3W and 40N 3W—were excavated in order to increase the size of the ceramic sample.

Locality 8
The rationale for selecting Locality 8 for testing was made explicit above. It was felt that by employing an approach entailing horizontal separation such as can be realized by focusing attention on all of the abandoned storm beaches at FLNn-6, some measure of chronological ordering of Native cultures can be achieved in an area such as this where vertical stratification is almost non-existent. Two test pits, Numbers 1 and 2, each five feet square, were located adjacent to each other on the crest of the fifth beach ridge. The main intention was to transect the beach ridge. However, because of its breadth (around 10 meters), only a small section of the beach, albeit one large enough to verify the presence of cultural material incorporated into as well as located on top of the beach deposits, was investigated.

An additional test pit, Number 3, was located 15 feet north of Test Pit No. 2 with the intention of intersecting the low gravel bar uncovered in the west half of Test Pit No. 2 and which had incorporated in it several waterworn quartz flakes (Figure 24).
The partial profile showed that the beach was comprised of several narrow, low gravel bars. Sand filled the intervening space and to a large extent covered the gravel bars, giving the beach a low, rounded aspect. In some sections of the profile there existed the problem of determining whether the sands or the gravels were deposited first or whether, more likely, the deposition of the sands and gravels was a simultaneous, dependent event. No stratification within the sand was discerned. In the upper part of the profile, the visible "stratified" appearance is attributed to the presence of soil horizons typical of a forest podzol which developed under the specific Boreal Forest conditions of the Narrows area.

Cultural material, which was entirely of Aboriginal origin, was found on the surface of the beach, but occurred more frequently within the beach sands. Some material was found in the beach gravels. The excavation was carried out using arbitrary 5 or 10 cm levels. Where there was a sharp break between the sand and gravel natural levels were used in an effort to separate the material.

Because most of the cultural material had been water-worked, no record was kept of the horizontal distribution of material, a procedure normally used when excavating an undisturbed campsite. The matrix was removed and washed so that a total recovery of material would be achieved. There was no clear break between material that was left on the beach by people who occupied this spot after the waters had receded, and material that was incorporated into the beach deposits during a higher water level. It is possible that some later material became incorporated into the beach deposits by means other than wave action, that is, by the uprooting of trees, animal burrowing, etc. Excavations terminated at the water table which, in Test Pit No. 1, occurred around 50 cm below the surface.
The cultural material recovered from all three test pits was comprised entirely of lithics (Figure 27). A breakdown of the material in terms of artifacts and levels for each test pit is presented in Tables 3 to 5. Here, for the convenience of presentation, material found in the humic Ah horizon, in the beach sands and in the gravel deposits will be treated separately. Furthermore, since Test Pits 1 and 2 were located adjacent to each other, the material from both will be considered together.

In Test Pits 1 and 2, the Ah or LH soil horizon contained 147 quartz flakes, 14 quartzite flakes, 155 chert flakes, 2 bear molars, 4 ironstone flakes and an expended chert bipolar core. The beach sands were more fruitful. They contained 515 quartz flakes, 9 quartzite flakes, 230 chert flakes, 6 ironstone fragments, a quartz chopper (Cat. No. FlNn-6/1560; length 50 mm, width 26.5 mm, thickness 14 mm), a piece of worked shale and a waterworn quartz flake. Incorporated into or covered with water-deposited gravel were 522 quartz flakes, 15 chert flakes, 17 waterworn quartz flakes, a quartz bipolar core (Cat. No. FlNn-6/1550; length 51 mm, width 27.5 mm, thickness 15 mm) and a crude quartz projectile point (Cat. No. FlNn-6/1553; length 26.5 mm, width 17.5 mm, thickness 7.5 mm) (Figures 28, 29).

A similar sequence of deposits, that is, waterworked sands covering a bar of coarse gravels, was present in Test Pit No. 3 as in the first two pits. From the surface to a depth of 5 cm, the material recovered consisted of 2 waterworn quartzite flakes, a chert core (Cat. No. FlNn-6/1596) and a unilaterally retouched chert flake (Cat. No. FlNn-6/1595). The retouched flake has a length of 21.5 mm, a width of 17.5 mm and a thickness of 4.5 mm. In addition, there were 12 quartz and 5 chert flakes.

A worked quartz flake, 2 waterworn quartzite flakes,
Figure 27. Lithic artifacts recovered from Site F1Nn-6, Locality 8, Test Pits 1, 2 and 3.
a) crude quartz projectile point (Cat. No. F1Nn-6/1553);
b) and c) two aspects of two spent chert bipolar cores (F1Nn-6/1571 and F1Nn-6/1579); d) chert end scraper (F1Nn-6/1603); e) retouched chert flake (F1Nn-6/1595); f), g), h) and i) are chert end scrapers (F1Nn-6/1665, F1Nn-6/1880, F1Nn-6/1896 and F1Nn-6/1911); j) three aspects of a retouched grey shale flake (F1Nn-6/1753). (See also Figure 33).
Table 3. Site FlNn-6, Locality 8, Test Pit #1.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>Ah horizon</td>
<td>nil</td>
<td>3</td>
</tr>
<tr>
<td>Beach sand to 20 cm</td>
<td>14 ironstone frags. (1525)</td>
<td>-</td>
</tr>
<tr>
<td>20-30 cm SE 1/4 of pit;gravel</td>
<td>nil</td>
<td>23</td>
</tr>
<tr>
<td>20-30 cm WEST 1/2 of pit;sand</td>
<td>1 ironstone frag. (1533)</td>
<td>1</td>
</tr>
<tr>
<td>pebbles</td>
<td>1 waterworn quartz flakes (1536 a, b)</td>
<td>31</td>
</tr>
<tr>
<td>30-40 cm NE 1/4 of pit;gravel</td>
<td>2 waterworn quartz flakes (1539 a,b)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3 waterworn quartz frags. (1544 a,b,c)</td>
<td></td>
</tr>
<tr>
<td>40-50 cm</td>
<td>1 waterworn chert flake (1543)</td>
<td></td>
</tr>
<tr>
<td>gravel beach deposit</td>
<td>nil</td>
<td>210</td>
</tr>
<tr>
<td>40-50 cm WEST 1/2 of pit pebbly</td>
<td>nil</td>
<td>203</td>
</tr>
<tr>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-50 cm NE 1/4 of pit;pebbly</td>
<td>1 "worked" quartz flake (1550)</td>
<td>24</td>
</tr>
<tr>
<td>sand covered with gravels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-50 cm</td>
<td>1 quartz projectile point (1553)</td>
<td>229</td>
</tr>
<tr>
<td>gravel beach deposit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 814 1 26
Table 4. Site FlNn-6, Locality 8, Test Pit #2.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>Ah horizon</td>
<td>2 bear (?) molars (1559a,b)</td>
<td>2</td>
</tr>
<tr>
<td>10-15 cm WEST 1/2 of pit; water-worked sand</td>
<td>1 crude quartz biface (1560)</td>
<td>72</td>
</tr>
<tr>
<td>0-5 cm WEST 1/2 of pit; dark sandy L-H horizon</td>
<td>1 chert biface tip (1566)</td>
<td>1 chert point (?) mid-section (1571)</td>
</tr>
<tr>
<td>0-5 cm EAST 1/2 of pit; dark sandy L-H horizon</td>
<td>4 ironstone fragments (1472 a-d)</td>
<td>25</td>
</tr>
<tr>
<td>5-10 cm EAST 1/2 of pit; grey sand with some clay</td>
<td>1 quartz chopper (1575) bipolar core</td>
<td>2 fire cracked rocks (1577 a, b)</td>
</tr>
<tr>
<td></td>
<td>1 "worked" shale flake (1578)</td>
<td></td>
</tr>
<tr>
<td>5-10 cm NE 1/2 of pit; beach sand</td>
<td>nil</td>
<td>3</td>
</tr>
<tr>
<td>20 cm WEST 1/2 of pit; gravel bar</td>
<td>4 waterworn quartz flakes (1583 a-d)</td>
<td>-</td>
</tr>
<tr>
<td>10-20 cm EAST 1/2 of pit; beach sand</td>
<td>6 ironstone fragments (1584 a-f)</td>
<td>68</td>
</tr>
<tr>
<td>20-30 cm beach sand above beach gravel; EAST 1/2 of pit</td>
<td>6 waterworn quartz flakes (1591, 1592 a-e)</td>
<td>1 "retouched" quartz flake (1593)</td>
</tr>
<tr>
<td>Total:</td>
<td>370</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 5. Site FlNn-6, Locality 8, Test Pit #3.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 cm below original surface</td>
<td>1 retouched chert flake (1595)</td>
<td>12 - 5</td>
</tr>
<tr>
<td></td>
<td>1 chert core (1596)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 waterworn quartzite flakes (1594 a,b)</td>
<td></td>
</tr>
<tr>
<td>0-10 cm sod and sand</td>
<td>1 retouched quartz flake (1600)</td>
<td>6 - 5</td>
</tr>
<tr>
<td>5-10 cm dark grey sand</td>
<td>1 chert end scraper (1603)</td>
<td>4 - 4</td>
</tr>
<tr>
<td>10-15 cm light grey sand</td>
<td>2 waterworn quartzite flakes (1608 a,b)</td>
<td>3 - 1</td>
</tr>
<tr>
<td>10-20 cm light grey sand</td>
<td>nil</td>
<td>1 - 8</td>
</tr>
<tr>
<td>20-25 cm NE 1/4 of pit beach gravel</td>
<td>1 waterworn quartz flake (1611)</td>
<td>- - -</td>
</tr>
<tr>
<td>25-32 cm SE corner sand and gravel</td>
<td>nil</td>
<td>4 - 1</td>
</tr>
<tr>
<td>20-30 cm SW 1/4 of pit beach gravel</td>
<td>1 waterworn quartz flake (1614)</td>
<td>- - -</td>
</tr>
<tr>
<td></td>
<td>Total: 30 - 24</td>
<td></td>
</tr>
</tbody>
</table>
Figure 28. Sample of lithic debitage recovered from Site FlNn-6, Locality 8. The material comprises: 2 shale flakes, upper left; 4 black chert flakes, upper right; 4 Swan Valley chert flakes, lower left, and 3 ironstone flakes, lower right.

Figure 29. Artifacts recovered from Site FlNn-6, Locality 8. Top row: 2 spent bipolar nuclei of Swan Valley chert (Cat. Nos. FlNn-6/1579 and FlNn-6/1571). Bottom row: a quartz projectile point (FlNn-6/1553), a chert retouched flake (FlNn-6/1595) and a chert end scraper (FlNn-6/1603)(see also Figure 27).
22 quartz flakes and 14 chert flakes plus a chert end scraper (Cat. No. FlNn-6/1603) were associated with the sod zone to a depth of 10 cm below the surface.

Associated with the waterworked beach deposits were two waterworn quartzite flakes, 4 quartz flakes and 9 chert flakes. Below this, to a depth of 32 cm beneath the surface and in the gravel deposits, were found 2 waterworn quartz flakes and 4 quartz and 1 chert flake.

Interpretations of Locality 8

Two, and perhaps more, prehistoric Native cultural components were encountered in the testing of the fifth storm beach at Locality 8. The evidence for this assumption is derived from the fact that, in general, the material can be divided into that which has been left on the surface after the waters had receded and that which accumulated on the beach during one or more periods of occupation and which had become incorporated into the beach when the water level was high.

It is difficult to estimate the length of time that had elapsed since the water had receded from the fifth storm beach or the interval during which the active beach had been occupied. Understandably, no traces of charcoal were found that could be used for dating purposes. The quartz projectile point is very crude and by itself is not very reliable as an indicator of the age or ages of the component(s) involved. It vaguely resembles the McKean projectile form that was in vogue on the marginal plains approximately 1000 to 600 B.C. (Syms 1970: 131).

Whatever the time interval(s) involved, we can safely assume that the people who frequented or occupied the storm beach at Locality 8 pursued an economy based on primitive hunting, gathering and fishing and that they were at a band level of social integration. That is, the normal enduring
unit probably comprised several related families who were to a large degree economically self-sufficient, social self-sufficiency being realized at a higher but less stable and less permanent level of integration. It is possible that prehistoric peoples at both levels of integration camped at or near Locality 8.

From the proliferation of quartz, chert and quartzite flakes, it appears that one of the main activities was the quarrying of beach cobbles for the production of tools. The beaches may have served as quarries and workshops for people who also lived on the beach and who exploited the lithics virtually at their doorsteps, people who lived on the drier, main terrace and kept their quarrying and workshop activities separate from the rest of the other campsite activities (Figures 30, 31), or a group of people whose camp was so spread out that dwellings were located on both the main terrace and on the storm beach. The distance between the two is only a matter of several meters. The fact that domestic activities, other than those centering around the quarrying of raw materials and their alteration for and through manufacture of tools, were carried out here is suggested by the occurrence of several retouched flakes, a biface fragment and an end scraper. Perhaps these functioned in the processing of wooden, skin and food products.

The most obvious activity which was performed on the storm beach, and for which there is substantial evidence, is that centering around the production of stone tools. It seems that most phases could have been performed on this spot and that they could also have been carried out at the individual or family level. This involved the acquisition of suitable raw material, possibly from the then active beach, its alteration through heat-treatment, and the manufacture of desired tools. It is highly unlikely that intergroup private
Figure 30. A reconstruction of a hypothetical prehistoric scene at Site FLNn-6. The scene shows a small local band comprising several families camped on what is today the main terrace. Such local bands achieved a remarkable degree of economic and political self-sufficiency. A prehistoric society, identified as a group of people or a number of local and regional bands oriented towards a self-sufficient system of social action, frequently numbered in the neighborhood of 500 individuals. (Damas et al. 1969: 197-211). At this level of integration the society was, to a large extent, endogamous. That is, marriage limits usually determined societal boundaries. The nature of the food resources and the level of technological development set the limits on the size of the social unit occupying a particular tract of land. Besides having the resources to support a small local band, the First Narrows was probably a traditional gathering grounds for several of these local bands at favourable times of the year.

The open aspect of a mixed forest environment, shown in the illustration, conveys the idea that prehistoric populations may have consciously manipulated their environment through periodic burning. To the right, before the campsite, the waters of Waskesiu Lake are shown covering what is today the area of the abandoned beaches. High cut banks are visible on the left.
Figure 31. A reconstruction of a hypothetical prehistoric camp scene at Site F1Nn-6. A Native craftsman is utilizing the lithic resources of an active beach of Waskesiu Lake within sight of a camp located on the main terrace. The artisan, who is making a stone tool, is sitting on what is today the abandoned beach at Locality 8. The camp in the background is situated on the dry main terrace at Locality 7. In marked contrast to today's complex techno-economic system (where the acquisition of an item such as a knife is the final stage of a long and complex process involving many people in such diverse occupational specializations as mining, refining, manufacturing and sales, and the distribution of the product at an inter- or an intra-national scale), these same tasks could all have been performed by a single prehistoric Native craftsman with the resources found right near his camp.
Figure 31.
ownership of a tract of beach containing these vital lithic resources existed, or that the exploitation of them required an elaborate organization of labour. It is more likely that the quarrying (actually searching) for lithics and their alteration into tools was done at the individual level in a haphazard manner; that is, when the need arose.

The reject flakes show that at least four basic techniques were used in the working of the lithics—hard hammer and soft hammer percussion, the bipolar technique and the pressure technique. An examination of the debitage revealed that, in terms of relative frequency, quartz and chert comprised the greatest proportion of waste material. Quartz made up 72.02 percent of all the waste material while the percentage of chert was 24.87 percent. Quartzite comprised 1.58 percent of the waste material while ironstone and shale made up the remaining 2.11 percent. A similar relative frequency of lithic materials was noted in Locality 4 (Table 19).

Locality 4
Most of the effort during the 1973 archaeological investigations of Site FlNn-6 was concentrated at Locality 4. In July, three 5 x 5 foot test pits were excavated near and perpendicular to the escarpment of the main terrace in order to arrive at an evaluation of the potential of this area in terms of what cultural material was present and its mode of occurrence; that is, whether there was any sign of natural stratification which would have made possible the separation of the various cultural components present.

In August an additional 16 square meters in this area were partially or completely excavated. Following the July testing, it was evident that Site FlNn-6 was relatively rich in archaeological materials and that these resources would
best be developed through the establishment of a permanent interpretive center on the site which could house *in situ* as well as excavated materials. The recommendations drawn up at the end of the July phase of testing and submitted to the officials of the Park suggested that, given the potential and limitations of the site plus factors relating to its location and accessibility to the public, this approach be adopted. Further testing of the site at Locality 4 was recommended to locate a suitable feature or features of archaeological interest that would serve as a focal point on which to establish the interpretive center and, additionally, to try and locate the site of the Hudson's Bay Company establishment which was rumoured to have been in operation in the vicinity of the First Narrows during the 1880s and 1890s. Positive evidence suggesting the fact that an historic building had existed on or near Locality 4 came from the cultural remains gathered from the surface and recovered from the three test pits. Among the artifacts were hand-forged rectangular-shanked nails and fragments of historic ceramics.

The phase of testing in August of 1973 at Locality 4 proved successful beyond expectation. More historic materials including seed beads, lead shot, china fragments and rectangular-shanked nails were recovered. Also found was a cellar which pinpoints the location of an historic establishment here which has been tentatively identified as the Hudson's Bay Company store. It was only partly excavated. Aboriginal material was also recovered in quantity. Several features were uncovered in close proximity to the historic cellar and have been left *in situ* virtually intact since these features and the cellar were recognized as important elements should the recommendations for the archaeological development of the Narrows Site F1Nn-6, as presented in a later section, be adopted.
A generally standard excavation procedure was used in testing this area. The culture-bearing deposits were shallow and lacked clear-cut stratigraphy. Changes in soil colour were noticeable but these were attributed not to depositional processes but to the developmental processes which are common to Boreal Forest environments. The procedure used entailed carrying the excavations down in arbitrary levels. In Squares 5S 21E, 8S 20E, 8S 21E and 8S 22E cultural material consisted also of features. These are suitable for development as a focal point for an interpretive center. They were left *in situ* and covered with a sheet of heavy gauge plastic and dirt. In other test pits excavations were carried to the bottom of the culture-bearing deposits.

The cultural material recovered in the different test units and at different levels within the units is summarized in Tables 6 to 18. Metric dimensions of some of the more striking artifacts are given in Appendices B and C. Here, the material has been divided according to the two major historic periods represented; the prehistoric Aboriginal period and the historic fur trade or Aboriginal-White period. Also recovered in the excavations was debris which had accumulated during the fairly recent interval of tourist utilization of this area. Locality 4 had been the site of three tourist bungalows.

Traces of Native occupation, prehistoric and possibly early historic, were well represented throughout Locality 4. Much of the material consisted of lithic workshop debitage. In Test Pits 1, 2 and 3 1350 quartz, 157 quartzite and 348 chert flakes were found. An examination of this reject material and the cores shows that four main techniques were used: hard hammer percussion; soft hammer percussion; bipolar method and pressure. In Test Pit 2 many of the quartzite flakes had prepared platforms and bear evidence of having been
Table 6. Site FlNn-6, Locality 4, Surface.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>Surface</td>
<td>2 modern ceramic fragments (1930 a,b)</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>1 lead scrap (1931)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 glass fragment (1932)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 retouched chert flake (1935)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 articulating crockery fragments (1938 a,b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 bone fragments (1939 a,b)</td>
<td>38</td>
</tr>
<tr>
<td>northernmost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cabin site</td>
<td>6 modern ceramic fragments (1630 a-f)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 historic ceramic fragment (1631)</td>
<td></td>
</tr>
<tr>
<td>middle</td>
<td>2 square nails (1615, 1616)</td>
<td>37</td>
</tr>
<tr>
<td>cabin site</td>
<td>1 metal scrap (1617)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 "worked" rhyolite flake (1620)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 chert bipolar core (1629)</td>
<td></td>
</tr>
<tr>
<td>southernmost</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>cabin site</td>
<td>1 rodent mandible (1623)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 cartridge casing (1632)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 square nail (1633)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>227</td>
</tr>
</tbody>
</table>

Total: 227 5 76
Table 7. Site FlNn-6, Locality 4, Test Pit #1.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>A</td>
<td>1 round nail (1639)</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1 rodent mandible (1640)</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>1 round nail (1641)</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>1 glass fragment (1642)</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>1 bone fragment (1648)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 square nail frag. (1649)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3 historic china fragments (1650)</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>2 china fragments (1651 a,b)</td>
<td>182</td>
</tr>
<tr>
<td>E</td>
<td>nil</td>
<td>135</td>
</tr>
<tr>
<td>F</td>
<td>1 chert core (1659)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>1 quartzite core (1661)</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>nil</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>584</td>
</tr>
</tbody>
</table>
Table 8. Site FlNn-6, Locality 4, Test Pit #2.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>A</td>
<td>1 chert end scraper (1665)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 cartridge casing (1666)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 lead scrap (1667)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 square nail fragments</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(1668 a,b, 1669, 1670, 1671)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 lead scrap (1672)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 square nails (1673, 1674)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 glass fragment (1675)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 metal scrap (1676)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 mandible fragments</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1677-79)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 lead fragments (1680, 1683)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fish vertebra (1684)</td>
<td>23</td>
</tr>
<tr>
<td>B</td>
<td>7 bone fragments (1685 a-g)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3 lead scraps (1686 a-c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 square nails (1687, 1695, 1696, 1697)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 metal fragment (1688)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 metal screen (1694)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 metal ring (1698)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 blue glass trade bead (1699)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 aboriginal body sherd (1700)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 rodent mandible (1701)</td>
<td>117 18</td>
</tr>
<tr>
<td>C</td>
<td>1 quartz core chopper (?) (1711)</td>
<td>101 39 25</td>
</tr>
<tr>
<td></td>
<td>1 large shell casing (1712)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>nil</td>
<td>137</td>
</tr>
<tr>
<td>E</td>
<td>nil</td>
<td>53 24 25</td>
</tr>
<tr>
<td>F</td>
<td>nil</td>
<td>2 2</td>
</tr>
<tr>
<td>G</td>
<td>nil</td>
<td>2 - -</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>435 145 140</td>
</tr>
</tbody>
</table>
Table 9. Site FlNn-6, Locality 4, Test Pit #3.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartzite chert</td>
</tr>
<tr>
<td>A</td>
<td>1 chert core (1730)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 square nail frag. (1733)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 glass fragment (1734)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 metal scrap (1735)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 leg bone fragments (1736 a-g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 bone fragments (1737 a-e)</td>
<td>19 - 13</td>
</tr>
<tr>
<td>B</td>
<td>1 aboriginal body sherd (1740)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 square nails (1741, 1742)</td>
<td>43 - 32</td>
</tr>
<tr>
<td>C</td>
<td>1 retouched chert flake (1745)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 plain body sherd (1748)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 chert core (1749)</td>
<td>56 - 13</td>
</tr>
<tr>
<td>D</td>
<td>2 rim sherds (1752 a-b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 retouched grey shale flake (1753)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 clay pipe stem fragment (1754)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 white plastic button</td>
<td>38 - 6</td>
</tr>
<tr>
<td>E</td>
<td>1 worked shale flake (1758)</td>
<td>9 - 7</td>
</tr>
<tr>
<td>F</td>
<td>nil</td>
<td>8 - 1</td>
</tr>
<tr>
<td>G</td>
<td>nil</td>
<td>12 - -</td>
</tr>
</tbody>
</table>

Total: 185 - 72
Table 10. Site FlNn-6, Locality 4, Square 1S 21E.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 cm below surface; light grey sand</td>
<td>1 gun screw (1878)</td>
<td>11 3 4</td>
</tr>
<tr>
<td></td>
<td>1 shotgun shell casing (1879)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 chert end scraper (1880)</td>
<td></td>
</tr>
<tr>
<td>5-10 cm below surface; NW 1/4 of square</td>
<td>1 chert end scraper (1896)</td>
<td>71 16 27</td>
</tr>
<tr>
<td>6-10 cm below surface; light grey sand</td>
<td>nil</td>
<td>34 9 18</td>
</tr>
<tr>
<td>10-15 cm below surface; light grey sand</td>
<td>1 quartz core (1889)</td>
<td>86 11 27</td>
</tr>
<tr>
<td></td>
<td>1 worked quartz cobble (1890)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 quartz bipolar cores (1891 a,b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>202 39 76</td>
</tr>
</tbody>
</table>
Table 11. Site FlNn-6, Locality 4, Square 5S 21E.

Flakes and Fragments

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>quartz</th>
<th>quartzite</th>
<th>chert</th>
<th>other*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 cm below surface;</td>
<td>1 square nail (1905)</td>
<td>183</td>
<td>6</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>light grey sand</td>
<td>1 flat glass fragment (1906)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 worked quartz pebble(1907)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-8 cm below surface;</td>
<td>1 crudely worked quartz flake (1916)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>light grey sand</td>
<td>4 articulating flat glass fragments (1917 a-d)</td>
<td>394</td>
<td>8</td>
<td>84</td>
<td>10</td>
</tr>
<tr>
<td>8-11 cm below surface;</td>
<td>8 burnt bone fragments (1923 a-h)</td>
<td>256</td>
<td>8</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>light grey sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>833</td>
<td>22</td>
<td>164</td>
<td>29</td>
</tr>
</tbody>
</table>

* basalt
Table 12. Site FlNn-6, Locality 4, Square 7S 20E (East Trench).

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 cm below surface;</td>
<td>1 fired clay chinking (1946)</td>
<td>quartz</td>
</tr>
<tr>
<td>disturbed sand</td>
<td></td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - 1</td>
</tr>
</tbody>
</table>

Table 13. Site FlNn-6, Locality 4, Square 7S 20E (East Trench).

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 cm below surface in</td>
<td>wood frags. (1940, 1941)</td>
</tr>
<tr>
<td>disturbed area (cellar fill)</td>
<td>2 square nails (1942, 1943)</td>
</tr>
<tr>
<td>1 small piece of clay</td>
<td>chinking (1949)</td>
</tr>
<tr>
<td>1 large piece of clay</td>
<td>chinking (1950)</td>
</tr>
<tr>
<td>1 bone fragment (1951)</td>
<td></td>
</tr>
<tr>
<td>wood and charcoal fragments</td>
<td></td>
</tr>
<tr>
<td>1 square nail shank</td>
<td></td>
</tr>
<tr>
<td>(1952)</td>
<td></td>
</tr>
<tr>
<td>(1953)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14. Site FlNn-6, Locality 4, Square 8S 16E.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flakes and Fragments</td>
</tr>
<tr>
<td>0-10 cm in disturbed Ah horizon (beneath road gravel)</td>
<td>1 jack knife (2035)</td>
</tr>
<tr>
<td></td>
<td>4 round nails (2036-2039)</td>
</tr>
<tr>
<td></td>
<td>4 brown bottle glass fragments (2040 a-d)</td>
</tr>
<tr>
<td></td>
<td>1 china fragment (2041)</td>
</tr>
<tr>
<td></td>
<td>6 plastic fragments (2042 a-f)</td>
</tr>
<tr>
<td></td>
<td>5 bone fragments (2043 a-e)</td>
</tr>
<tr>
<td></td>
<td>15 glass fragments (2044 a-o)</td>
</tr>
<tr>
<td></td>
<td>20 bottle glass frags. (2045 a-s, 2046)</td>
</tr>
<tr>
<td></td>
<td>1 bird bone fragment (2047)</td>
</tr>
<tr>
<td></td>
<td>3 square nails (2048-2050)</td>
</tr>
<tr>
<td></td>
<td>1 obsidian flake (2051)</td>
</tr>
<tr>
<td>0-10 cm below Ah horizon (light brown sand)</td>
<td>11 quartz bipolar cores (2058 a-f, 2066 a-e)</td>
</tr>
<tr>
<td></td>
<td>1 utilized quartzite flake (2060)</td>
</tr>
<tr>
<td></td>
<td>1 chert end scraper (2064)</td>
</tr>
<tr>
<td></td>
<td>1 chert bipolar core (2068)</td>
</tr>
<tr>
<td>10-20 cm below Ah horizon</td>
<td>4 quartz bipolar cores (2069 a-d)</td>
</tr>
<tr>
<td>20-30 cm disturbed area in E 1/2 of Square</td>
<td>2 quartz bipolar cores (2072 a-b, 2073)</td>
</tr>
<tr>
<td></td>
<td>1 quartz core (2075)</td>
</tr>
<tr>
<td></td>
<td>5 burnt bone fragments (2077 a-e)</td>
</tr>
<tr>
<td>30-40 cm EAST 1/2 of Square</td>
<td>2 burnt bone fragments (2079)</td>
</tr>
</tbody>
</table>

Total: 467 1 89
Table 15. Site FlNn-6, Locality 4, Square 8S 20E (East).

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Chert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 cm below surface</td>
<td>4 flat glass fragments (2004 a-d)</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3-22 cm below surface along</td>
<td>5 flat glass fragments (2005 a,b, 2008 a,b, 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 lead scraps (2010, 2028)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 blue china fragment (2012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 carpenter's pencil (2014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 seed beads (2015, 2022, 2023, 2031)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 chert drill tip (2017)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 lead shot (2019, 2021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 glass fragments (2026, 2032)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 bone fragment (2027)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>decayed wood fragments (2033, 2034)</td>
<td>24</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 31 - 43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 16. Site FlNn-6, Locality 4, Square 8S 21E (West 1/2).

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>Surface</td>
<td>21 round nails (1982 a-t) 7 glass fragments (1983 a-g)</td>
<td>101</td>
</tr>
<tr>
<td>0-2 cm below surface</td>
<td>1 square nail (1989) 1 flat glass fragment (1991)</td>
<td>53</td>
</tr>
<tr>
<td>disturbed sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5 cm below surface</td>
<td>nil</td>
<td>12</td>
</tr>
<tr>
<td>disturbed sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-8 cm below surface</td>
<td>nil</td>
<td>52</td>
</tr>
<tr>
<td>disturbed sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-14 cm</td>
<td>nil</td>
<td>18</td>
</tr>
<tr>
<td>NW 1/4 of Square</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-21 cm</td>
<td>1 pin (2016)</td>
<td></td>
</tr>
<tr>
<td>NW 1/4 of Square</td>
<td>1 lead shot (2018)</td>
<td></td>
</tr>
<tr>
<td>Square (cellar fill)</td>
<td>1 square nail (2020)</td>
<td></td>
</tr>
</tbody>
</table>

Total: 236 4 52
Table 17. Site FlNn-6, Locality 4, Square 8S 22E (West 1/2).

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quartzite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chert</td>
</tr>
<tr>
<td>Surface</td>
<td>4 round nails (1961 a-d)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1 metal button (1962)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>0-4 cm below surface</td>
<td>3 round nails (1955 a-c)</td>
<td>37</td>
</tr>
<tr>
<td>disturbed sand</td>
<td>1 square nail shank (1956)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>nil</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

Table 18. Site FlNn-6, Locality 4, Square 8S 22E (East 1/2).

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quartzite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chert</td>
</tr>
<tr>
<td>Surface</td>
<td>4 round nails (1967 a-d)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2 flat glass fragments (1968 a-b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 lead scrap (1969)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 square nail shank (1970)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 bone fragment (1973)</td>
<td>10</td>
</tr>
<tr>
<td>0-2 cm below surface</td>
<td>1 charcoal fragment (1974)</td>
<td>9</td>
</tr>
<tr>
<td>disturbed sand</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
detached by a soft hammer (Figure 32). Most of the 145 quartzite flakes appear to have come from one cobble. Chert displayed a greater variability of texture and colour between cobbles. Five or six different cobbles of chert had been worked in the vicinity of Test Pits 2 and 3. One bipolar core (Cat. No. FlNn-6/1730) indicates that even small pebbles were utilized in the production of tools. It has a length of 31 mm, a width of 26 mm and a thickness of 14.5 mm.

Much of the lithic material came from the upper five inches (ca. 13 cm) of the deposits. In Test Pit 3 flakes of an orange coloured chert showed a vertical dispersion throughout the upper eight inches; in Test Pit 2, a tan coloured quartzite showed a similar vertical distribution.

Other artifacts of Native manufacture recovered from Test Pits 1, 2 and 3 included: a chert end scraper (Cat. No. FlNn-6/1665); a retouched chert flake (Cat. No. FlNn-6/1745); 2 worked flakes of shale (Cat. Nos. FlNn-6/1753 and FlNn-6/1758) (Figures 33, 34); 2 chert cores (Cat. Nos. FlNn-6/1659 and FlNn-6/1730); a quartzite core (Cat. No. FlNn-6/1661) and a quartz core chopper (Cat. No. FlNn-6/1711). In addition, 5 fragments of Native pottery were found. One of the fragments (Cat. No. FlNn-6/1752) is a rim sherd made up of 2 articulating pieces. It is 26.5 mm long, 20 mm wide and 5 mm thick. Both interior and exterior vessel surfaces are smooth. The edge of the rim is narrowed and also smooth. Another sherd (Cat. No. FlNn-6/1740) is a plain, smoothed-over body fragment. It is 39.5 mm long, 32 mm wide and varies in thickness from 8.5 mm to 5.5 mm. It has a laminated appearance and contains several pebbles of feldspar up to 4 mm in diameter which had been incorporated into the clay (Figures 35, 36). The other fragments are small body sherds showing the same surface attributes. The ceramics are tentatively identified as Laurel Plain (Mayer-Oakes 1970: 166, 239) which date to an
Figure 32. A sample of basalt, quartz and quartzite reject flakes recovered from excavations at Site FlNn-6, Locality 4. All of the flakes have the attributes, including the prepared and ground striking platforms (visible in the photo at the base of each flake), which are common features on flakes removed by the soft hammer technique.

Figure 33. Artifacts from Site FlNn-6, Locality 4. Top row: a retouched flake of grey shale (Cat. No. FlNn-6/1753) and a chert end scraper (FlNn-6/1665). Bottom row: three chert end scrapers (FlNn-6/1880, FlNn-6/1896 and FlNn-6/1911).
Figure 34. Artifacts from Site FlNn-6, Localities 4 and 8. Top row: three chert end scrapers and two retouched flakes. Bottom row: three chert end scrapers, a retouched flake of grey shale and an obsidian flake.

Figure 35. A body sherd and a reconstructed rim fragment of prehistoric Native ceramic tentatively identified as Laurel Plain. Both fragments came from Site FlNn-6, Locality 4.
Figure 36. Artifacts recovered from Test Pits 1, 2 and 3, Site FlNn-6, Locality 4.

Top row: a rim fragment and a body sherd of Native ceramic (Cat. Nos. FlNn-6/1752 and FlNn-6/1740).

Bottom row: two historic ceramic fragments (FlNn-6/1650 b and FlNn-6/1639) and a portion of a stem from a clay pipe (FlNn-6/1754).
estimated 1,500 to 2,500 years ago in southeastern Manitoba (Hlady 1970: 106).

More artifacts and significant features of Native origin were uncovered in the August phase of testing. As usual, lithic debitage comprised the major proportion of the prehistoric material recovered (Table 19). There were 2,016 quartz flakes and fragments, 71 quartzite flakes and 512 chert flakes. Of particular interest was the occurrence of 1 obsidian flake (Cat. No. FlNn-6/2051) in Square 8S 16E (Figure 34). Lithic technology as reflected by the debitage reflects the fact that at least the four techniques referred to earlier were used. In Square 8S 16E there was a high incidence of chert and quartz cobbles on which the bipolar technique had been applied. Of the 28 bipolar cores recovered in August from testing at Locality 4, 22 came from Square 8S 16E. In a few instances the cores were found as two separate halves (Figures 37, 38). Strangely, no hammer or anvil stones were recovered from this test square. Four chert end scrapers (Cat. Nos. FlNn-6/1880, FlNn-6/1896, FlNn-6/1911 and FlNn-6/2064) were found as well as four utilized or retouched flakes. In the cellar fill in Square 8S 20E E 1/2, mixed with historic debris, was found a tip of a delicately flaked brown chert drill (Cat. No. FlNn-6/2017). The fragment measured 16.5 mm long, 7 mm wide and 4 mm thick at the break (Figure 39).

What appear to be the scattered remains of two fire hearths were uncovered, one in Square 5S 21E W 1/2 (Figure 40) and the other in Square 8S 22E. Plans of both were included in the Field Progress Report on FlNn-6 for August 1973 (Gryba 1973: 19-20). Because they are potentially key elements in the future archaeological development of Site FlNn-6, they have been left intact and covered over.

Historic items of Eurocanadian manufacture were found during the July and August 1973 phases of testing at Locality 4.
Table 19. Absolute and Relative Frequencies of Chipping Detritus from Site FlNN-6.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Test Pit</th>
<th>Quartz</th>
<th>Chert</th>
<th>Quartzite</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>822</td>
<td>26</td>
<td>1</td>
<td></td>
<td>865</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.03%</td>
<td>3.005%</td>
<td>.005%</td>
<td>1.85%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>374</td>
<td>374</td>
<td>22</td>
<td></td>
<td>780</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.95%</td>
<td>47.95%</td>
<td>2.82%</td>
<td>1.28%</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>32</td>
<td>24</td>
<td>4</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Locality 8 combined</td>
<td></td>
<td>1228</td>
<td>424</td>
<td>27</td>
<td>26</td>
<td>1705</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72.03%</td>
<td>24.87%</td>
<td>1.59%</td>
<td>1.51%</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>584</td>
<td>89</td>
<td>9</td>
<td></td>
<td>682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85.63%</td>
<td>13.05%</td>
<td>1.32%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>435</td>
<td>140</td>
<td>145</td>
<td></td>
<td>720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.42%</td>
<td>19.44%</td>
<td>20.14%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>185</td>
<td>72</td>
<td></td>
<td></td>
<td>257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71.98%</td>
<td>28.02%</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Sq. 1S 21E W 1/2</td>
<td></td>
<td>202</td>
<td>76</td>
<td>39</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63.72%</td>
<td>23.98%</td>
<td>12.30%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Sq. 5S 21E W 1/2</td>
<td></td>
<td>833</td>
<td>164</td>
<td>22</td>
<td>29</td>
<td>1048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.48%</td>
<td>15.65%</td>
<td>2.10%</td>
<td>2.77%</td>
<td>100%</td>
</tr>
<tr>
<td>Sq. 8S 16E</td>
<td></td>
<td>548</td>
<td>102</td>
<td>1</td>
<td>1</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84.05%</td>
<td>15.65%</td>
<td>0.15%</td>
<td>0.15%</td>
<td>100%</td>
</tr>
<tr>
<td>Sq. 8S 22E</td>
<td></td>
<td>80</td>
<td>42</td>
<td>3</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.0%</td>
<td>33.60%</td>
<td>2.40%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Locality 4 combined</td>
<td></td>
<td>2867</td>
<td>685</td>
<td>219</td>
<td>30</td>
<td>3801</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.43%</td>
<td>18.02%</td>
<td>5.76%</td>
<td>0.79%</td>
<td>100%</td>
</tr>
<tr>
<td>7</td>
<td>Locality 7 combined</td>
<td></td>
<td>2367</td>
<td>561</td>
<td>272</td>
<td>3200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.97%</td>
<td>17.53%</td>
<td>8.50%</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
Figure 37. Artifacts found at Site FlNn-6, Locality 4, Square 8S 16E. The top illustrations show several aspects of two articulating halves of a quartz bipolar core (Cat. No. FlNn-6/2032). Arrows indicate the areas of crushing. In the bottom row are two chert end scrapers (FlNn-6/2064 and FlNn-6/2065c) and a fragment of a delicately retouched chert flake (FlNn-6/2055a).
Figure 38a. Three bipolar cores represented by fitting halves recovered from Square 8S 16E at Site FlNn-6, Locality 4. Two halves of a split pebble of red chert are shown in the upper right hand corner. In the bottom row are two quartz cores (Cat. Nos. FlNn-6/2058 a-b and FlNn-6/2072 a-b).

Figure 38b. Three bipolar cores from Site FlNn-6, Locality 4. Shown from left to right are a chert core (FlNn-6/1659), a quartz core (FlNn-6/1891 b) and two articulating sections of a chert core (FlNn-6/1719 a-b).
Figure 39. Artifacts recovered from the historic cellar fill at Site FlNn-6, Locality 4. Top row: a chert drill tip (Cat. No. FlNn-6/2017), a fragment of historic china and a fragment of a rectangular-shanked, hand-wrought nail. Bottom row: three small seed beads, three lead shot, and five fragmentary or complete rectangular-shanked hand-wrought nails.

Figure 40. Site FlNn-6, Locality 4, showing exposed lithic debris and the boulders of a scattered prehistoric fire hearth in Square 8S 21E.
From the evidence recovered it appears that two loci of different activities are represented: a workshop and dwelling. Eighteen complete or fragments of large rectangular-shanked, hand-wrought "square" nails were found in Test Pits 1, 2 and 3. Also recovered were 7 scraps of lead, 3 cartridge casings, a metal ring, a blue glass trade bead, 4 pieces of "blue" historic china and a stem from a clay pipe. Of the cartridge casings two are 44 calibre; one bears the inscription "W R A Co. 44 W C F" and the other the inscription "S U M C H 44 C F". The other casing is of a smaller calibre, 8 mm in diameter, and is a rim fire. A brass shot gun casing, on which the inscription has been obscured, was found in the adjacent Square 1S 21E W 1/2.

Additional historic artifacts were recovered during August from Locality 4. These included 15 more large rectangular-shanked hand-wrought nails, 2 pieces of historic china, 2 pieces of crockery, a gun screw (?), a carpenter's marking pencil (?), 3 small lead shot, 4 small seed beads, 3 pieces of clay chinking and several bits of wood. Most of the nails and other items like the lead shot, seed beads, wood and glass chinking were associated with or in close proximity to the historic cellar situated in Squares 8S 20E, 8S 21E, 7S 20E and 7S 21E (Figures 36, 39, 41, 42 and 43).

The historic cellar is represented by a depression whose parameters have been determined by trenching and extrapolating the limits where these have not been uncovered by excavations (Figures 44, 45, 46, 47 and 48). In Squares 8S 20E and 8S 21E the cellar was tested to a depth of 22 cm below surface which was sufficient to confirm the fact that it was a cellar of historic importance and most likely the cellar of the Hudson's Bay Company establishment at the First Narrows. The edge of the cellar is marked by contrasting soil colour and texture (Figure 45). Where it has not been disturbed the cellar is
Figure 41. Historic artifacts recovered from Site FlNn-6, Locality 4, Test Pits 1, 2 and 3.

Top row: a brass shotgun cartridge case (Cat. No. FlNn-6/1879), two center-fire 44 cal. cartridge casings (FlNn-6/1661 and FlNn-6/1712) and a scrap of lead (FlNn-6/1913).

Center row: a metal ring (FlNn-6/1698).

Bottom row: a cut metal scrap (FlNn-6/1676) and a metal screw (FlNn-6/1878).
Figure 42. Historic artifacts from Site FlNn-6, Locality 4, Test Pits 1, 2 and 3. Top row: a metal screw (Cat. No. FlNn-6/1878), a metal ring (FlNn-6/1698) and a glass bead (FlNn-6/1699). Bottom row: a section of cut metal scrap (FlNn-6/1676).

Figure 43. Some of the rectangular-shanked, hand-wrought nails found at Site FlNn-6, Locality 4. Note the wide range of variation in the size of the nails.
Figure 44a. Site FlNn-6, Locality 4. View of July, 1973 test area showing excavated Test Pits 1, 2 and 3. Assistants Robert Mayer in background and Ian Stark in foreground. The view is towards the south.

Figure 44b. Site FlNn-6, Locality 4. Photo shows the general view of the August, 1973 excavations. Ian Stark, left and Robert Mayer point out the edge of the historic cellar. Square 8S 16E is visible to the left of the cellar at the edge of the gravel service road. A section of the main highway leading to the Narrows Campgrounds is visible in the upper left hand corner of the photo. The view is towards the north.
Figure 45. Site FlNNn-6, Locality 4. Ian Stark, left and Robert Mayer point out the edge of the historic cellar in Square 7S 20E. In the test pit in the foreground the cellar fill is expressed as the dark stain.
Figure 46. Map of Locality 4, Site FlNn-6, showing general plan of 1973 excavations. Note the close proximity of the historic Hudson's Bay Company (?) cellar to the two prehistoric fire hearths. (Drawing by K. Walton).
Figure 47. The location of the historic cellar at Locality 4, Site FlNn-6, in greater detail. The edge of the cellar has been determined through excavation, surface indications and extrapolation.
Figure 48. Plan of Squares 8S 21E W 1/2 and 8S 20E E 1/2 showing the proliferation of historic and prehistoric material in and near the historic cellar. Excavations outside of the cellar did not extend beyond a depth of 10 cm below surface.
lined with a dark organic layer which probably represents the organic debris which accumulated as the cellar lay exposed after the site had been abandoned. A recent increment of the cellar fill composed of historic and prehistoric materials is attributed to the activities of the people who probably leveled the area off in preparation for the erection of the tourist bungalows. The bottom of the cellar had not been reached in the excavations. Some of the plate and bottle glass fragments and metal scraps found may also belong to the time of the historic fur trade establishment. Items that are considered to be of recent origin, that is, deriving from the time that the tourist complex was in operation, are the 6 pieces of black plastic, a jack knife, 36 round nails and fragments of brown glass containers (beer bottles?).

Interpretations

Locality 4 of Site FlNn-6 contains adequate traces of former human occupation. This was confirmed during the 1973 testing when data were recovered suggesting that two major cultural traditions are represented, a prehistoric Native tradition and an historic Eurocanadian one. Both are distinguished not only by marked changes in the material culture but in radical distinctions in their economic orientation, one oriented towards self-sufficiency, the other towards dependency of the two cultural groups upon each other.

In terms of the prehistoric Native cultures the problems deriving from the lack of sedimentation and the vertical distribution of the same variety of lithic material makes it impossible to state how many components are present or how long the area has been occupied. One projectile point recovered by Forsman in 1971 indicates that the Narrows area was occupied as early as Oxbow times some 4,000 to 5,000 years
ago. An Agate Basin point found on the beach at the east end of Waskesiu Lake suggests human occupation of the general area since 8,000 - 9,000 years ago. The only diagnostic Aboriginal artifacts found in Locality 4 are the plain ceramic sherds which have been identified as Laurel Plain, a type that was common in Southern Manitoba roughly between 500 B.C. and A.D. 1000 (Mayer-Oakes 1967: 370-71). No ethnic affiliation of this pottery is suggested. Fabric impressed "Cree" ceramics have been recovered in another area of Site FLNn-6.

At least one group in the past had direct or indirect contact with the Rocky Mountain region. This is indicated by the occurrence of one obsidian flake which was found in Square 8S 16E. Geographic displacement of obsidian is rare but not uncommon. The writer is aware of several isolated occurrences of obsidian in Manitoba in the Swan Valley region.

One of the strongest indicators of past human use of this locality is the large quantity of reject lithic materials that was recovered from every test pit. Without doubt, the active beach of Waskesiu Lake served as the primary source of raw lithic materials. Some of the material, the chert for example, was altered by heating for several hours to make it more workable prior to the production of tools from it by one or more techniques used by the prehistoric artisans. Of interest is the fact that there exists no conclusive evidence that any of the techniques (that is, the hard and soft hammer percussion, the bipolar and the pressure) were employed in the production of microblades. There is still no empirical evidence that would suggest that microblades formed a part of any assemblage seen from Prince Albert National Park. The implication is that northern groups did not frequent the area which is now the park or, if they did, that microblades formed no, or at least an insignificant, part of their total assemblage.
Evidence for domestic activities of hunting-gathering-fishing groups, other than those involved in the procurement of raw lithic materials and the manufacture from them of tools, comes from the occurrence of end scrapers, retouched flakes, ceramics and a drill fragment. These were probably used in activities concerned with the processing of hides and food and woodworking.

So far no traces of Native dwellings have been discovered. If these had been constructed of a wooden framework with a bark or hide cover, understandably the material would have perished due to the active biochemical processes of the Boreal Forest environment. Nor have any traces of stone tipi rings been found. Either stones were not used in any part of the construction of a dwelling or, if used, they have become scattered to such an extent that no obvious dwelling outline remains; alternatively, they could have been reused for another purpose such as a fire hearth. It is possible that such remains might be found in the unexcavated section.

The scattered remains of two fire hearths were found, one in Square 5S 21E and the other in Square 8S 22E. It is assumed that the main function of these was in the preparation of food and the production of heat. It is possible that they might have been used in the curing of fish or animal meat. In the absence of any stratification it is impossible to tell whether they were left by members of the same culture group who happened to occupy this area seasonally. To suggest that they were left during one season's occupation is indeed wild speculation. No diagnostic artifacts were found to date the hearths, although association of the artifacts with the hearths would then have to be proven. As for using the C-14 method for dating these hearths, there are problems of equal magnitude. Very little charcoal has been found and then it is impossible to determine if it originated from the hearth
or from a forest fire which had devastated the area. The hearths themselves are not diagnostic elements since stone-lined hearths occur throughout the archaeological record. In conclusion, one can only say that the hearths might be of prehistoric origin and suggest their possible purposes.

One cellar plus a quantity of historic artifacts reflects the fact that this spot was a favoured one during the fur trade era. It is suspected that the material derives from the Hudson's Bay Company occupation at the First Narrows area during the 1880s and 1890s. To them, the locality was attractive from a strategic perspective as it was near a place the Native people traditionally frequented; the First Narrows formed a bottleneck, channeling both land and water traffic, and it was a good vantage point from which traffic on Waskesiu Lake could be observed.

Only a small section of the cellar has been excavated. Its depth remains unknown. It is evident from the little testing which has been carried out that the debris used to fill the cellar, probably as part of the leveling process in the establishment of the bungalow complex in 1948, is prolific in artifacts including wood in an advanced state of decay. This wood might be that from the original building. While the maximum depth of this important feature is unknown, its horizontal dimensions have been determined. For this purpose two narrow trenches have been excavated in Square 7S 20E intersecting the cellar edge. Its parameter was then determined by extrapolation and by following the edge as suggested by the surface contour of this spot.

No fireplace or wooden or stone foundation of the building was found. The occurrence of burnt chinking in Square 7S 20E suggests that either the building was destroyed by fire and the clay which was used to patch the cracks between the logs burned or else the clay may have been used as mortar
in the construction of a fireplace and became fired during the normal use of the hearth. Several rocks observed at the base of the escarpment directly opposite the cellar suggest that perhaps the building had a stone fireplace but that it was removed by later people.

The store, of which the dimensions are unknown, was probably the focus of Native-Eurocanadian interaction on this side of the Narrows when the Hudson's Bay Company became established. Further along the edge of the escarpment of the main terrace in the vicinity of Square 1S 21E and Test Pits 1, 2 and 3 were found artifacts suggesting a workshop or blacksmith shop contained in a building that was either connected with or disconnected from the main building. Artifacts included empty cartridge cases, lead scraps and cut metal scraps. This may have been the place where shells were reloaded. Two of the empty cartridges are of 44 calibre center fire. Forty-four calibre center fire rifles and hand guns were already in use at the time of the Riel Rebellion in 1885. The occurrence of this type of shell at FlNn-6 implies that the site could have been occupied as early as 1885.

The main problem remaining concerning the historic component of this site is that of confirming, beyond doubt, whether the artifacts actually derive from the Hudson's Bay Company occupation or whether the Hudson's Bay Company establishment was located elsewhere and what is represented are the remains left by a free enterprise trader. There may be in the records of the Hudson's Bay Company a reference to their establishment at Waskesiu (Red Deer) Lake. These records have the potential of providing valuable data for ethno-historical research in general.
Recommendations

The archaeological resources of Locality 4 figure prominently in terms of the recommendations proposed for the archaeological development of Site P1Nn-6. These resources (that is, the prehistoric and historic features that have been left in situ as well as the recovered artifacts) while superficially meagre must be regarded as "relatively spectacular" in comparison to the potential of other localities of Site P1Nn-6 and other sites within Prince Albert National Park. The recommendations are developed at length in a later section.

Locality 7 (Forsman's 1971 Test Area)

Locality 7 has been identified as that portion of Site P1Nn-6 situated on the main terrace and located along and west of the main highway between the road leading to the large earth borrow pit and the stream valley. The edge of the main terrace from Locality 4 to Locality 7 shows signs of spatially continuous or overlapping human occupation. Today the main highway leading to the Narrows Campgrounds serves to divide the main terrace into these two localities. Hence, the spatial separation of Localities 4 and 7 is a very biased one, facilitated by a very recent feature (the road) which in no way determines the limits of occupation of any of the past groups.

In 1971 Forsman and his crew excavated a series of ten 1 x 1 meter squares in close proximity to each other just west of the main highway. It is suspected that his rationale for selecting this area for testing was because it is close to a prolific area of the site. Three more 1 x 1 meter test pits adjacent to each other, Square 38N 3W, 39N 3W and 40N 3W, were excavated in 1973 in order to enlarge the sample of prehistoric ceramics first encountered by Forsman. His test pits included
Squares 34N 1E, 38N 1W, 38N 3W, 39N 0E, 39N 1E, 39N 2W, 39N 4W, 39N 9W, 40N 1W and 44N 1E.

Evidence of prehistoric, historic and quite recent occupation was found at Locality 7. Several small depressions in the immediate area appear to have been recent garbage or outhouse pits. What was apparently a cellar of a recent dwelling was located south of the test area among some large evergreens. Its approximate dimensions are 3 x 2 meters by 1 meter long. The recent nature of this feature is reflected by the fact that the logs which lined the pit, although in an advanced stage of decay, were cut with a saw and had round nails embedded in them.

Evidence for Native occupation of this part of the terrace was strongly represented in the excavations. There are indications also suggesting that more than one prehistoric component is present. The cultural diversity of the archaeological record is reflected by the occurrence of two projectile points, both of different forms (Figure 49) and of Native ceramics which may be of a later date than either of the point styles. One of the projectile points is crudely made of a coarse orange chert and has broad side notching. The point (Cat. No. FlNn-6/1403) is 37 mm long, 23 mm wide and 7.5 mm thick. It vaguely resembles the Hanna type. The other point (Cat. No. FlNn-6/1079) is finely made of white quartz. It appears to have been a concave based, eared Oxbow-like point with the ears broken off. The incomplete point measures 31 mm in length, 21.5 mm in width and 5 mm in thickness.

Other lithic artifacts included 5 chert, 5 quartz, 1 quartzite and 1 granite end scraper (Figure 50); 2 biface fragments (1 being of a fine-grained black chert); 8 retouched flakes, quartz, quartzite and chert cores, and a hammerstone of greywacke. The hammerstone (Cat. No. FlNn-6/1877) is roughly triangular in outline, 101 mm long, 96 mm wide and
Figure 49. Three projectile points found during the 1971 survey of Site F1Nn-6. The large quartzite point on the left resembles the Hanna style; the point in the middle, with ears broken off, resembles the Oxbow style, and the small chert point may be late prehistoric.

Figure 50. Four end scrapers recovered during the 1971 survey of Site F1Nn-6, Locality 7.
60 mm thick. There are signs of heavy use on all three points and signs of occasional use on other parts of the cobble. Besides the tools, a large quantity of debitage was recovered. Locality 7 yielded 2,367 quartz, 561 chert and 272 quartzite flakes.

A large quantity of ceramics, apparently from one vessel, was recovered from Squares 38N 3W, 39N 0E, 39N 1E, 39N 2W, 39N 3W and 40N 3W. Some 261 sherds and 2 clusters of sherds preserved in the sandy matrix were collected. The pottery is in an extremely poor state of preservation; many of the sherds had been split. A lattice of plant roots had become established between the split sherds. Only in a few instances has it been possible to restore a fair sized piece of pottery from many sherds. Despite these faults it is possible to describe some of the basic attributes of this vessel. The pottery falls into the general classification of Winnipeg, Fabric-impressed ware (MacNeish 1958: 162-170). More recently, Hlady (1970: 111-14) has described similar fabric-impressed ceramics from the le Pas area associated with the Clearwater Lake phase which he associated with the historic and protohistoric Woodland Cree.

Paste
Temper. Small pebbles of quartz and feldspar which, because of their rounded or sharp aspects were obtained either by crushing granite or using coarse sand, were mixed with the clay to provide the temper. There is some sign that an organic material, probably bits of wood, got mixed up with the clay. Texture. The texture is coarse and very poor. Numerous laminations have developed and many of the sherds have split into several layers. In many instances a network of plant rootlets occupies the spaces within the split sherds.
Hardness. The hardness of the pottery is between 2 and 3. Much of the time it is less and crumbles very easily. Treatment with preservative was necessary on some sherds before their removal from the soil. The very fragile nature of the sherds has made it impossible to reconstruct more than small sections of the vessel.

Colour. The exterior is generally dull grey in colour while split sherds sometimes display a light brown colour. There is slight evidence for charring on the interior of the vessel. Thickness. The thickness varies throughout the vessel. Even certain parts of the vessel, the neck for example, are not consistent in their thickness. The rim varies in thickness from 6.5 mm to 9 mm. The base of the neck and the shoulder represent the thickest parts of the pot, averaging 11 mm. The neck and some parts of the body below the shoulder achieve a minimal thickness of 5 mm.

Method of Manufacture. There is no indication that the vessel was manufactured using coils of clay. It may be that the "paddle and anvil" technique was used as reflected by the laminated aspect of the sherds. The interior is smooth, although not always even. The exterior displays throughout numerous small pit marks which are impressions left by a fabric which was wrapped around the vessel while the clay was still plastic. The rim is rounded. Occasionally, around 30 mm below the rim deep impressions (punctates) occur, formed by using a round solid object several millimeters in diameter.

Vessel Form

Rim. Fabric impressions mark the exterior and lip of the rim. Neck. The neck is generally parallel with the opposite side of the vessel. At 37 mm from the top of the rim the vessel flares out to a pronounced shoulder 25 mm below the base of the
neck. At the shoulder the pot achieves its greatest thickness. Here is also the greatest breadth of the vessel.

Body. Below the shoulder the vessel assumes a rounded appearance, curving towards what may have been a rounded base. Because of its very fragmentary nature no accurate estimations of the overall dimensions of the vessel could be arrived at. A crude estimation of the mouth of the vessel would give it a diameter of around 133 mm and the body between 155 mm and 180 mm. No attempt was made to determine its height (see Figures 51 to 53).

Temporal and Geographic Range. Hlady (1970: 112) suggests a time range of A.D. 1200 - 1500 based on C-14 dates for the occurrence of this pottery type in the Southern Indian Lake area and an estimated A.D. 1500 - 1870 for its occurrence in the southern sections. He further mentions that this pottery type appears to be the predominant type in the area north of the Saskatchewan River from Moose Lake to Lac la Ronge and was possibly associated with historic and protohistoric Woodland Cree.

A small quantity of items of Eurocanadian origin was found in the excavation at Locality 7. This included 6 hand-forged rectangular-shanked nails. They are considerably smaller than the nails recovered from Locality 4, the largest nail (Cat. No. FlNn-6/339) being only 60 mm long, 4 mm wide and 3.5 mm thick. Two metal buckles of the same 2-prong style also occurred. They (Cat. Nos. FlNn-6/341 and FlNn-6/1816) measure 31 mm and 34 mm long, 24 mm and 25 mm wide, and 3 mm and 6 mm thick, respectively. Whether they bear any manufacturer's stamp is obscured by their badly rusted nature. Other artifacts include: a large glass bead; 11 fragments of historic china bearing a blue design; 5 metal scraps; 2 lead scraps, and 21 bottle and plate glass fragments (Figures 54 and 55).
Figure 51. Reconstructed neck and shoulder fragments of Native ceramics from Site FLNn-6, Locality 7. Note the small plant rootlets visible in the middle portion of the sherd in the lower right hand corner of the photo.

Figure 52. A reconstructed body sherd of Native pottery recovered from Site FLNn-6, Locality 7.
Figure 53. Two rim sherds of fabric-impressed Native ceramics recovered from Site FlNn-6, Locality 7. Note the punctate in the sherd on the left. This is a common form of design used on Cree ceramics.

Figure 54. Two reconstructed fragments of historic ceramics recovered from Site FlNn-6, Locality 7.
Figure 55. Two metal buckles and five rectangular-shanked nails found at Site FlNn-6, Locality 7. Compare the size of these nails with the nails recovered from Locality 4 (see Figures 39 and 43).
Interpretations of Locality 7

In many respects the situation at Locality 7 is similar to that which was observed for Locality 4 where two major phases of human history were reflected by marked differences in material culture; a prehistoric phase marked mainly by stone and some pottery and an historic phase to which is attributed metal and glass artifacts. There are noticeable differences especially when the historic artifacts from both localities are compared. Artifacts recovered from Locality 7 are presented in Tables 20 to 31.

In terms of the material of Native origin it was mentioned that two different styles of projectile points, a Hanna-like and a possible Oxbow style, and the occurrence here of pottery, were a good indication that several components were represented by the material. This, combined with the fact that the excavation units were small, makes it difficult to discuss Locality 7 in terms of specific activity loci. One can interpret the nature of occupation of Locality 7 in general, however. One of the main functions of this part of Site FlNn-6 was obviously that of a campsite where numerous domestic activities were performed to sustain a group or a coalescence of several groups of inhabitants at a hunting-gathering-fishing level of subsistence technology and probably at a band level of social organization. The production of stone tools was a major activity as expressed by the large quantity of waste material recovered. Similar techniques appear to have been used here as in other parts of the site; these are the hard and soft hammer percussion, bipolar and pressure techniques. There was no positive evidence for a microblade technique as suggested by Forsman. The "microblade cores" identified by him turned out to be spent nucleii produced by the bipolar technique. The active beach was probably the most likely source for the quartz, cherts and quartzites used. As was
Table 20. Site FlNn-6, Locality 7, Test Pit #3, 4N 1E.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Chert</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 quartz uniface (256)</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0-6 cm</td>
<td>1 chert end scraper (281)</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1 quartzite "thing" (298)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 21. Site FlNn-6, Locality 7, Test Pit #3, 8N 1W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Chert</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-29 cm below surface</td>
<td>13 glass fragments (1344 - 1353)</td>
<td>135</td>
<td>17</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>11-11.9 cm</td>
<td>1 white chert worked flake (1361)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-17.9 cm</td>
<td>1 quartzite projectile point (1403)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>north profile</td>
<td>nil</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>south profile</td>
<td>nil</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>east profile</td>
<td>nil</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>west profile</td>
<td>nil</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>139</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 22. Site FlNn-6, Locality 7, Test Pit #3, 8N 3W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>0-3 cm below surface</td>
<td>2 Native pottery body sherds (1770 a,b)</td>
<td>9</td>
</tr>
<tr>
<td>dark humus</td>
<td>1 glass bottle frag. (1771)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 lead scraps (1772 a,b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 bone fragments (1775 a-e)</td>
<td>9</td>
</tr>
<tr>
<td>3-5 cm below surface</td>
<td>1 metal fragment (1779)</td>
<td>1</td>
</tr>
<tr>
<td>light grey sand</td>
<td>1 metal tack (1780)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 square nail frag. (1781)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 historic china fragment (1782)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 historic china fragment (1783)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 articulating Native pottery body sherds (1784 a,b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 split Native pottery sherds (1785 a-g, 1786 a-c)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>32 burnt bone fragments (1787 a-ff)</td>
<td></td>
</tr>
<tr>
<td>5-8 cm below surface</td>
<td>1 split Native pottery body sherd (1791)</td>
<td>176</td>
</tr>
<tr>
<td>light grey sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-11 cm below surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>light grey sand</td>
<td>nil</td>
<td>204</td>
</tr>
<tr>
<td>11-15 cm below surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>light grey sand</td>
<td>1 chert microblade-like flake (1797)</td>
<td>261</td>
</tr>
<tr>
<td>15-20 cm below surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>surface; reddish-brown sand</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>20-25 cm below surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>surface; reddish-brown sand</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>759</td>
</tr>
</tbody>
</table>
Table 23. Site FlNn-6, Locality 7, Test Pit #3, 9N OE.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>0-6 cm below surface</td>
<td>2 square nails (339, 340)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 buckle (341)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 biface fragment (348)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 uniface (349)</td>
<td>33</td>
</tr>
<tr>
<td>4-6 cm below surface</td>
<td>nil</td>
<td>6</td>
</tr>
<tr>
<td>7-9 cm below surface</td>
<td>nil</td>
<td>4</td>
</tr>
<tr>
<td>?</td>
<td>nil</td>
<td>23</td>
</tr>
<tr>
<td>?</td>
<td>1 chert end scraper (547)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 granite end scraper (714)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 pottery sherds (1414 - 1427, 1430, 1431)</td>
<td>184</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>
Table 24. Site FlNn-6, Locality 7, Test Pit #3, 9N 1E.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>0-3 cm above datum</td>
<td>rib bone fragments (251, 252)</td>
<td>9</td>
</tr>
<tr>
<td>1-2 cm below datum</td>
<td>nil</td>
<td>6</td>
</tr>
<tr>
<td>1.6 cm</td>
<td>1 quartzite core (1090)</td>
<td>-</td>
</tr>
<tr>
<td>5.0-5.9 cm</td>
<td>1 quartzite scraper (1025)</td>
<td>-</td>
</tr>
<tr>
<td>7-8 cm</td>
<td>1 quartz projectile point (1079)</td>
<td>-</td>
</tr>
<tr>
<td>8-8.9 cm</td>
<td>1 quartz end scraper (1064)</td>
<td>-</td>
</tr>
<tr>
<td>13-13.9 cm</td>
<td>1 quartzite graver (1085)</td>
<td>-</td>
</tr>
<tr>
<td>?</td>
<td>2 pottery sherds (1428, 1429)</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>86</td>
</tr>
</tbody>
</table>
Table 25. Site FlNn-6, Locality 7, Test Pit #3, 9N 2W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>?</td>
<td>10 glass fragments (1092-1095, 1100, 1101)</td>
<td>-</td>
</tr>
<tr>
<td>?</td>
<td>13 pottery sherds (1447-1460)</td>
<td>-</td>
</tr>
<tr>
<td>0-1 cm</td>
<td>1 bone fragment (1097)</td>
<td>-</td>
</tr>
<tr>
<td>2-2.9 cm</td>
<td>1 tin can fragment (1103)</td>
<td>-</td>
</tr>
<tr>
<td>3.5 cm</td>
<td>1 bead (1107)</td>
<td>-</td>
</tr>
<tr>
<td>4-4.9 cm</td>
<td>1 quartz end scraper (1130)</td>
<td>-</td>
</tr>
<tr>
<td>6-6.9 cm</td>
<td>1 quartzite scraper plane (1119)</td>
<td>-</td>
</tr>
<tr>
<td>?</td>
<td>nil</td>
<td>-</td>
</tr>
<tr>
<td>west profile</td>
<td>nil</td>
<td>-</td>
</tr>
<tr>
<td>east profile</td>
<td>nil</td>
<td>1</td>
</tr>
<tr>
<td>south profile</td>
<td>nil</td>
<td>2</td>
</tr>
<tr>
<td>north profile</td>
<td>nil</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 138 21 25 -
Table 26. Site FlNn-6, Locality 7, Test Pit #3, 9N 3W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
</tr>
</thead>
</table>
| 0-3 cm below (dark humus) | 1 metal scrap (1804)
3 burnt glass frags. (1805 a-c)
23 burnt bone frags. (1808 a-w)
1 glass fragment (1812)
8 historic china fragments (1813, 1814 a-g)
1 square nail (1815)
1 metal buckle (1816)
burnt bone frags. (1819) |
| 0-5 cm light grey sand | 1 glass fragment (1809)
1 Native pottery body sherd (1817)
Native pottery concentration #4 (1818)
Native pottery concentration #1 (1820)
Native pottery concentration #2 (1821)
Native pottery concentration #5 (1822)
Native pottery concentration #1a (1823)
Native pottery concentration #2a (1824)
Native pottery concentration #3a (1825) |
| 5-8 cm light grey sand | 9 small Native pottery body sherds (1826 a-i) |
| 8-11 cm light grey sand | 10 Native pottery body sherds (1830, 1831 a-i) |
| 11-15 cm light grey sand | 1 "worked" pebble (1837)
1 worked shale flake (1839) |
| 15-20 cm; reddish-brown sand | nil |
| 20-25 cm; reddish-brown sand | nil |
| **Total:** | 374 7 79 |

Flakes and Fragments

<table>
<thead>
<tr>
<th>quartz</th>
<th>quartzite</th>
<th>chert</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 374 7 79
Table 27. Site FlNn-6, Locality 7, Test Pit #3, 9N 4W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartzite</td>
</tr>
<tr>
<td>1</td>
<td>1 china fragment (173)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1 metal fragment (174)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 glass fragment (175)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 bone fragment (178)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>nil</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>nil</td>
<td>4</td>
</tr>
<tr>
<td>?</td>
<td>1 chert scraper (423)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 microblade (?) (489)</td>
<td>123</td>
</tr>
<tr>
<td>1-1.1 cm</td>
<td>1 quartz end scraper (939)</td>
<td></td>
</tr>
<tr>
<td>1.1-1.2 cm</td>
<td>1 chert end scraper (959)</td>
<td></td>
</tr>
<tr>
<td>1.2-1.3 cm</td>
<td>1 "possible" microblade core (914)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 quartz core (915)</td>
<td></td>
</tr>
<tr>
<td>1.3-1.4 cm</td>
<td>1 quartz end scraper (947)</td>
<td></td>
</tr>
<tr>
<td>2.5-2.6 cm</td>
<td>1 quartz core (987)</td>
<td></td>
</tr>
<tr>
<td>8-8.9 cm</td>
<td>1 chert bipolar core (937)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>141 20 40 90</td>
<td></td>
</tr>
</tbody>
</table>
Table 28. Site FlNn-6, Locality 7, Test Pit #3, 9N 9W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>1.6-6 cm</td>
<td>quartz end and side scraper (1221)</td>
<td>-</td>
</tr>
<tr>
<td>4.3 cm</td>
<td>1 glass fragment (1202)</td>
<td>-</td>
</tr>
<tr>
<td>?</td>
<td>nil</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 29. Site FlNn-6, Locality 7, Test Pit #4, ON 1W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>quartz</td>
</tr>
<tr>
<td>1.3-5 cm</td>
<td>1 chert scraper (1268)</td>
<td>-</td>
</tr>
<tr>
<td>2.0-2.9 cm</td>
<td>1 glass fragment (1232)</td>
<td>-</td>
</tr>
<tr>
<td>4.0-4.9 cm</td>
<td>1 square nail (1233)</td>
<td>-</td>
</tr>
<tr>
<td>4.0-5.9 cm</td>
<td>1 glass fragment</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 metal fragment (1235)</td>
<td>-</td>
</tr>
<tr>
<td>9.0-9.9 cm</td>
<td>1 round nail (1239)</td>
<td>-</td>
</tr>
<tr>
<td>?</td>
<td>nil</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>228</td>
</tr>
</tbody>
</table>
Table 30. Site FlNn-6, Locality 7, Test Pit #4, ON 3W.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Flakes and Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 cm below surface</td>
<td>burnt bone fragments (1847, 1848 a-c)</td>
<td></td>
</tr>
<tr>
<td>(dark humus)</td>
<td>2 burnt bottle glass fragments (1850, 1853)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 glass bottle, neck fragment (1851)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 metal scrap (1852)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 bone fragments (1854 a,b)</td>
<td>-</td>
</tr>
<tr>
<td>0-5 cm light grey sand</td>
<td>1 quartzite end scraper (1856)</td>
<td>17 5 5</td>
</tr>
<tr>
<td>5-8 cm light grey sand</td>
<td>1 Native pottery body sherd (1861)</td>
<td>58 4 25</td>
</tr>
<tr>
<td>8-11 cm light grey sand</td>
<td>1 "possible" quartz plane (1865)</td>
<td>42 3 19</td>
</tr>
<tr>
<td>11-15 cm light grey sand</td>
<td>1 retouched chert flake (1868)</td>
<td>48 6 28</td>
</tr>
<tr>
<td>15-20 cm reddish-brown sand</td>
<td>1 black chert biface (1870)</td>
<td>27 - 4</td>
</tr>
<tr>
<td>20-25 cm reddish-brown sand</td>
<td>1 graywacke hammerstone (1877)</td>
<td>10 1 2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>202 19 83</td>
</tr>
</tbody>
</table>
Table 31. Site FLNn-6, Locality 7, Test Pit #4, 4N 1E.

<table>
<thead>
<tr>
<th>Level</th>
<th>Artifacts</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Chert</th>
<th>Unsorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>1 brown chert end scraper (310)</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1 piece of metal (324)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 square nail (325)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

noticed with the cherts from other sites in Prince Albert National Park and at other localities at Site FlNn-6, the chert worked at Locality 7 had been subjected to thermal treatment prior to working. The evidence for this is seen in the bright colours and the luster seen on much of the material.

The popularity of this spot as a campsite is indicated by the occurrence of end scrapers, retouched flakes, biface fragments and pottery. These were used in the performance of various domestic tasks, these tasks differing little between culture groups on a general temporal basis but perhaps more by any cultural group on a seasonal basis. There is direct and indirect evidence to suggest that Locality 7 was occupied during a snow-free period. The exploitation of lithic resources from the beach is certainly one of these better indicators. The seasonal occurrence of food resources is another main factor which made this place attractive during the spring-fall season but for which direct evidence is lacking. Today fish (sucker) are found in the stream, north of Locality 7, during the summer months and the Narrows area is a popular spot for migrating waterfowl. Winter occupation was probably not as intensive in terms of size of groups and frequency of occupation. As with Locality 4 a similar situation existed at Locality 7; no traces of dwellings were observed.

The historic materials recovered in Locality 7 differ in one major aspect from those recovered in Locality 4, mainly in the permanency of occupation. The artifacts, specifically the nails found at Locality 4, differ from those recovered from Locality 7. Elsewhere the writer has suggested that the size and form of the nails recovered from a site are good indicators of the function they served. From their distribution and associations it is possible to make quite sound inferences about the structure and function(s) of the building, etc. (see
Kidd 1970: 98-102, figure 68). The nails found at Locality 4 are generally much larger than those recovered at Locality 7. They were undoubtedly used in the construction of the building(s) to which the cellar belonged. The nails from Locality 4 also show a broader range of variation (compare the nails shown in Figure 55 with those shown in Figures 39 and 43). The smaller size of the nails from Locality 7 and their bent form suggests that they might have been used as horseshoe nails or in the construction of a wagon or other mobile object. If this was so, it may be that the other items of historic origin may have been part of the material culture of a mobile Native, Métis or even White group or family who had temporarily camped here and interacted with the Hudson's Bay Company people only a short distance away at Locality 4. It is also possible that the historic occupation at Locality 7 predates the arrival of the Hudson's Bay Company to the Narrows area and that the historic items originated at the independent trader's store located across the First Narrows.
Discussion and Interpretations of the Archaeology
of Prince Albert National Park

As is evident from the preceding sections, it is impossible, without heavy reliance on outside data, to present more than a small segment of the human history of Prince Albert National Park. While one reason for this must certainly lie in the incipient nature of the investigations, an even more critical one stems from the mode of occurrence of the cultural remains. It is not possible to isolate and arrange in chronological sequence any but the most diagnostic of artifacts. In the southern part of the province an open environment fostered the accumulation of stratified deposits in coulees, along river flood plains and other similar places which were often favoured by past inhabitants as camp spots. In such places the camp debris which had accumulated during a short interval of occupation became sealed from an earlier and later occupation by deposits of sterile or cultural material. At DjOn-117 in the Cypress Hills Provincial Park in Alberta 14 such cultural layers occurred within 3.5 meters (12 feet) of deposits and a similar situation existed at the Long Creek Site near Estevan. At such sites the archaeologist can, with confidence, describe particular cultural assemblages, compare them with others at the site, date them relatively and in many cases absolutely, and make inferences regarding the economic orientation of the inhabitants, the functional nature of the artifacts, size and social structure of the residence unit, as well as make comparisons between the different assemblages represented and attempt to account for the
similarities and differences that might be reflected throughout the record. In such a situation the chronological arrangement of cultural components is already present.

A situation like this does not exist at the sites discovered in Prince Albert National Park. Here, there has been no, or at least a very insignificant, accumulation of sediments. This means that the entire history of human occupation is confined to within a few centimeters of the surface. It is impossible to separate different prehistoric components using vertical stratigraphy. This is not only because natural and physical processes have acted to mix the different components, but also because similar lithic materials and similar techniques of lithic technology appear to have been used throughout the entire span of prehistoric human history at Prince Albert National Park. Aside from the fluted point complexes, central Canada appears to be devoid of any cultures which are temporally significant and technologically distinct. That is, it lacks industries such as the ground slate or microblade industries common to the Northwest Coast which are good temporal indicators. Any attempt, therefore, to make meaningful interpretation about and inferences from separate cultural components, even isolated by a procedure entailing the use of horizontal stratigraphy, could be accompanied with a lot of doubt and frustration. This has seriously affected the level of interpretation which has been attempted of the data recovered from the survey.

The general prehistoric cultural sequence suggested earlier for central Saskatchewan is one borrowed from a Plains environment. Different culture groups than those occupying the Plains area may have occupied the Boreal Forest. For example, artifacts of the Cody (Scottsbluff) complex are noticeably absent from any collections made in the Boreal Forest. Partly because of the lack of intensive investigation,
but more because no deep stratified sites have been found, only a very rudimentary cultural chronology is available for the Boreal Forest region. So far, based on the styles of projectile points and ceramics and other artifacts, the following cultures, arranged in order from oldest to most recent, have been identified as occurring within the park: Agate Basin; Oxbow; Hanna; McKean; Laurel Plain and Winnipeg Fabric-impressed ceramics (the latter probably protohistoric or historic Cree), and Hudson's Bay Company.

There is no clear evidence, aside from the Cree ceramics, to suggest an intrusion into this region by northern forest groups. Mainly this nebulous state of affairs is due to our current ignorance of the prehistoric cultural diversity of the northern forest region. Forsman's assertions of possible influences from Arctic or Northwest Microblade Traditions at the Mud Creek Site FlNn-51 and at other sites located within the Park are without support. What he has apparently identified as microblades could have been produced by any of the techniques identified at, for example, the Narrows Site FlNn-6. Moreover, what he has identified as microblade cores from Site FlNn-6 have, upon re-examination, turned out to be bipolar cores. Although its temporal limits are unknown, the bipolar technique has a wide geographical distribution. On the Plains the writer has found evidence of the use of this technique among the Oxbow material from the Cypress Hills Site DjOn-117 (Gryba 1972: 88). It is suspected that the bipolar technique was a technology elaborated in a situation where lithics, from the Native's perspective, were of a marginal nature. At both Prince Albert National Park and at the Cypress Hills much of the lithic material exploited occurred as waterworn pebbles and cobbles and the proportion of naturally occurring fine lithics was low. Coarse textured materials supplemented the fine grained lithics at both places; quartz at the former and
argillites and quartzites at the latter.

It would be naive to imply that there were no local or regional population movements on a seasonal or broader basis. The physical survival of a people at a stone age hunting-gathering-fishing level of cultural development demands some seasonal mobility, be it in a forest, parkland or plains environment. Only one site in Prince Albert National Park, FlNn-6, contains evidence indicating that it has been repeatedly occupied. This occupation was of a more permanent nature and/or by a larger number of individuals than was the occupation of the other sites located at Prince Albert National Park. The diversity and quantity of resources, which included fish, water fowl, land mammals plus vegetal resources and a local supply of lithic materials, that the Narrows area offered were no doubt the reasons for its popularity. In other words, the Narrows area presented an opportunity for the coalescence of economic cooperation and social interaction between a number of smaller social units which, part of the year, formed economically self-sufficient units dispersed throughout the surrounding forest and parklands. The small band, one composed of a few families, was the most enduring form of social unit of these people (see Fisher's comments on the social organization of the Woodland Cree [1973]). There are many historic and ethnographic accounts of this type of behavior among hunting-gathering societies throughout the world who were at a band level of social integration (Service [1962] presents a detailed account of the distinguishing characteristics of the various levels of primitive social organization).

For the central Canadian scene Ray's model of seasonal exploitation of the forest-grassland boundary is particularly relevant. The model (Figure 4) shows the ecological situations which brought together two culturally distinct peoples for part of the year, in winter. During the remainder of the year
these two peoples followed radically different subsistence patterns. The Cree, for example, were adapted to a forest environment and during the snow-free period were dispersed in small groups along the lakes and streams of the forest. On the other hand, the Assiniboine were adapted to a Plains bison hunting economy. During the winter both peoples moved to the shelter of the parkland. Bison herds also sought shelter and food in the parklands during this season and formed the major resource for both the Plains and Forest adapted peoples (Ray 1970; Walker 1974).

The historic evidence shows that ethnic boundaries expressed as occupation of exclusive tracts of parkland seldom existed. A contrary situation frequently existed; there was a lot of social interaction and cooperation between the peoples of the overlapping Forest adapted and Plains adapted cultural systems and there was a continual exchange of information so that each group possessed the necessary skills and information required in the economic exploitation of the three main ecological zones—the Boreal Forest, Parkland and the Prairie. As one example, the Cree learned from the Assiniboine the technique of constructing and using the fenced enclosure, or pound, used in the procurement of bison in a treed environment. This shared knowledge also eased the migration of ethnic groups such as the Plains Cree across environmental boundaries. How applicable this model is to the prehistoric situation which existed in the region of Prince Albert National Park remains to be tested. One would certainly not expect the parklands to be a vacuum during the summer, its most productive season, as the people involved themselves in exploiting the Plains and Boreal Forest. Rather, continuous summer occupation, even if by a segment of the wintering population, is to be expected.

The application of this model to the elucidation of
prehistoric human population dynamics must also take into account the environmental changes and possible geographic shifts in the parkland ecotone, which are reflected in the palynological record for central Saskatchewan. Maher (1969: 81) shows the historic range of the bison, moose and woodland caribou. The range of these three species of big game mammals, animals which were critical elements in the subsistence economy of prehistoric peoples, overlapped in central Saskatchewan. Because the specific habitat of these three species is different this would have had effects on the types of exploitative strategies required and adopted by the people in each case, both in terms of items of material culture used as well as the social relations involved for the successful outcome of the hunt. For example, the gregarious nature of bison and caribou favoured the collective participation of a Native group in exploiting these resources. Ethnographic documents reflect that this pattern was indeed common among many groups (Walker 1974; Ray 1969; others). There is sufficient historical documentation to show that many prehistoric groups may have had a full awareness of the adaptive strategies, continued by the historic groups of manipulating the environment through periodic burning for the maximization of its resource potential. The presence of the grassland in the southern part of Prince Albert National Park and the extension north of the bison range were probably due to this conscious manipulation. The location of archaeological sites predominantly near the major water bodies points to the fact that there was no exclusive reliance on large game by prehistoric groups for their subsistence economy, but that waterfowl and fish were also important.

One of the most comprehensive studies of the changing relationships between Native and White, and Cree and Assini-boine, groups in western Canada during the fur and pemmican...
trade has been carried out by Ray (1971). Because of its location between two major river systems, the Churchill and the Saskatchewan, and north of the main overland routes, Prince Albert National Park did not witness many of the historic events which other areas did. The two fur trade posts located here were of a small and temporary nature and were only established in the last half of the 19th century. Nevertheless, this was a significant phase in the history of Native-White relationships. Not much is known, aside from their location and time of occupation. A reconstruction of late historic events could be the subject of a separate project that would entail the search of Hudson's Bay Company and Church of England records.
The Evaluation of the Archaeological Potential of Prince Albert National Park

Taking into account the available palynological, geological and, in general, other paleo-environmental evidence, it is reasonable to suspect that the area now encompassed by Prince Albert National Park was open for human occupation as early as 10,000 - 11,000 years ago. Fluted point complexes are too poorly represented in central Saskatchewan to suggest that intrusion into this area at such an early date actually occurred. However, people were in the region shortly thereafter, as indicated by the occurrence of the base of a Paleo-Indian projectile point. The point base was found by a Park employee at the east end of Waskesiu Lake. It resembles the Agate Basin point style. These have been dated at sites on the Central Plains at 9,350 ± 450 years B.P. (Pettipas 1970: 15). Following the melting of the Pleistocene ice sheets and the establishment of fauna and flora, human occupation of central Saskatchewan could have been continuous to the present day since there are no environmental disasters recorded which were of a magnitude sufficient to interrupt or deter human use of this part of North America. The completeness of the record of human occupation of the area in and around Prince Albert National Park remains to be determined through further archaeological investigations.

While the construction of a chronological sequence of human events for Prince Albert National Park is still in an incipient stage, the same could be said of other aspects of archaeological investigations; for example, the reconstruction
of lifeways of past populations, the general study of land use in terms of exploitation of seasonal resources, or of techno-economic and social changes which resulted from long term environmental change, culture innovation, immigration, culture contact and the like. The unique position of Prince Albert National Park in an ecotone between the Boreal Forest to the north and the Plains to the south has already been considered. It may yield important data for the study of cultural dynamics of this region.

Aside from the problems which are present due to the embryonic state of archaeological investigations at Prince Albert National Park, three other factors must be acknowledged which bear directly on the evaluation of the Park's archaeological resources. One concerns the representativeness of the data, while the others concern the nature of the data regardless of whether the samples are representative or not. Regarding the first of these factors, given the cultural and environmental constraints under which the survey and testing were carried out, the archaeological evidence as presented in this report should not be interpreted as being representative of the potential of the entire park. This also applies for material collected from any one site. Even here a procedure that would have guaranteed a random sample was not used. The obvious contractual constraints were the specific instructions which limited the survey to two main parts of the park, Elk Trail and the First Narrows at Waskesiu Lake. When the potentials for archaeological development were assessed at Site F1Nn-6 methodological constraints were evoked which led to the collection of a very biased sample. Here the objective of the excavations was to locate the best and most informative features of archaeological interest as well as to enlarge the sample of Aboriginal pottery, rather than to obtain a random sample of material. The range of cultural variability such as
might be contained at Site FlNn-6 was of a secondary concern.

The heavy vegetation growth along parts of Elk Trail posed the major environmental constraint. It restricted much of the survey to that carried out along the road since, aside from several gravel pits and stream cut banks, these usually offered the only exposures of mineral terrain.

The second major factor to be considered is the nature of the archaeological resources themselves; that is, their content, mode of occurrence and so on. Much of Prince Albert National Park occurs in a Mixed Forest or Boreal Forest environment; environments which, because of their dense growth, permit little if any erosion or deposition under natural circumstances. The consequence of this lack of sedimentation is that throughout the Park cultural material is found on or near the surface; the remains of any and all occupations occurring at any site within the past 10,000 years are compressed to within a few centimeters of the surface. This is a situation typical of Boreal Forest environments. Frequently the cultural debris is found immediately beneath this accumulation of living and dead organic material. The park planners must be made fully aware of this factor when planning roads, trails and overnight camping grounds at places which hold archaeological potential.

The shallow nature of the archaeological sites poses particular problems to the archaeologist who is determined to arrive at some valid interpretations of the data. Where the entire period of human occupation for the past 10,000 - 11,000 years has been confined to within a few centimeters of the surface, biotic and physical factors have operated to mix the material so that the separation of individual components, in the absence of any diagnostic materials, is difficult or impossible. This situation presented itself at Site FlNn-6, where chert and quartzite debitage, beyond doubt from the same cobbles, showed a vertical displacement throughout the depth
of the cultural deposit.

Not only are the cultural remains shallow and mixed but, as stated in the Field Progress Report for July (Gryba 1972: 10), in comparison to sites found in the southern part of Saskatchewan, the Cypress Hills area of southwestern Saskatchewan/southeastern Alberta and the general southwestern part of Manitoba (areas with which the writer was familiar), the archaeological sites of Prince Albert National Park were not as prolific in the quantity of cultural material nor in their contribution of auxiliary data. Part of the reason for this stems from the relatively low carrying capacity of a Boreal Forest environment for and of people who possess a hunting-gathering-fishing level of subsistence. The food resources of northern forests are localized geographically and/or seasonally, or more frequently are dispersed. The prehistoric human aggregates adapted to their environment by living in small bands, the members bound together within and between bands by flexible social ties which permitted adjustments in band size to be made to the variable resources. Each repeated use of a site would guarantee further increments of debris. This was seen at Site FLNN-6 where campsite litter was found spatially dispersed over the three main geomorphic features. Sites such as those located along Elk Trail, which were not located near a predictable food supply, were probably seldom reoccupied, with the result that they contain little archaeological material. The high acidic conditions of the Boreal Forest environment no doubt led to the rapid rate of decomposition of any osteological remains thus limiting the cultural material to lithic remains and features such as fireplaces, lithic workshops, etc.

Perhaps a main contributing factor which accounts for the relatively poor nature of the archaeological resources is the lithic material that was used by the prehistoric populations.
At FlNn-6 almost 75 percent of the waste material consisted of quartz, a material which does not lend itself to the production of fine tools without an excessive amount of waste. Fine cherts, on the other hand, comprised nearly 20 percent of the lithics (Table 19). They were used to their maximum advantage. It is possible that some of the quartz tools may have escaped detection in the laboratory analysis. Also, it is possible that the prehistoric Native peoples adjusted their technology to include wood and bone tools to overcome this scarcity of suitable raw lithic materials, and that these former have since perished.

The third major factor bearing on the evaluation of any site within Prince Albert National Park is, of course, the host of cultural factors that enhance the value of a particular site from the perspective of salvage, development or preservation, or a combination of these. This includes factors such as accessibility, the danger of destruction through road or campground improvement, aesthetic quality and interpretive potential.

Given these three major factors, the evaluation of an archaeological site found within Prince Albert National Park, and the recommendations made regarding it are made in terms of the site's importance relative to other archaeological sites found within the boundaries of the park to date. It must be borne in mind that the evaluations were made in a dynamic context and that the relative value of any of the sites might be subject to change as new development programs are initiated in the Park and new archaeological discoveries are made.

Recommendations concerning most of the archaeological sites located during the 1973 survey have already been presented in the section following the description of the material recovered from each site. One site, however, stands above all others in terms of its relative importance. This is Site FlNn-6
(the Narrows site) for which recommendations for a course of action towards its eventual archaeological development are presented in the following chapter. There are several equally important reasons why Site FlNn-6 is considered more important than any other yet discovered in the Park. First, it contains a more abundant artifact content than other sites in the Park, an accumulation of material spanning two major phases of human history—a prehistoric Native phase and an historic Native/Eurocanadian phase. The former is expressed mainly as lithic campsite and workshop debris and features such as fire hearths. Diagnostic artifacts are rare but the material indicates that several components are present. A cellar and related historic items in Locality 4, and artifacts of White origin in Locality 7 probably derived from interaction between Native people and the Hudson's Bay Company and/or independent traders during the declining days of the fur trade, around 1880 to 1890.

Secondly, the Narrows Area in general contains natural and physical phenomena which are suitable for development into an on-site interpretive center. One aspect of this interpretive center could deal with the history of the human use of the ecological diversity of the Narrows area.

The location of the Narrows Site, FlNn-6, in terms of existing roads and campgrounds, is a third factor which adds to the importance of this site. It is accessible by road. Furthermore, it is near an established campground and there are provisional plans to landscape the portion of FlNn-6 below the main terrace into a picnic area.

Because of the above factor it is possible that the site will be affected in ways other than those relating directly to its archaeological development. These include road improvement and the development of part of the site into a picnic area.
The final consideration is that two forms of development can be planned for the site: an \textit{in situ} display of archaeological features, and a supplementary display of artifacts and data focusing on various topics. These topics may be the presentation of the sequence of human involvement in this part of Canada, interpretation of specific localities and features at F1NN-6, and/or the interpretation of the natural history of the Narrows area.
Recommendations for Site FlNn-6

The recommendations made here regarding the archaeological resources of the Narrows Site, FlNn-6, differ little if any from those submitted in the Field Progress Reports which were appended to the Preliminary Report prepared in the fall of 1973. They take into account three types of modifications which are expected to affect at least part of the area covered by Site FlNn-6. These types of modifications are:

1) landscaping and the restoration of the Store-Cabin Complex site into a recreation area,
2) the upgrading of the main highway leading to the Narrows Campgrounds, and
3) the possible archaeological development of Site FlNn-6.

Landscaping and Restoration
Landscaping and restoration activities designed to convert the former Store-Bungalow Complex site into a picnic area are expected to be confined almost exclusively to the area bounded by the main terrace and Waskesiu Lake. This is the area identified as one of the three distinct geomorphic areas at FlNn-6. It is characterized by a low aspect and the presence of five abandoned storm beaches. All of the beaches had associated with them Native material either on them or, as in the case of the highest beach (No. 5), in the vicinity of Locality 8, incorporated into its deposits. It is also possible that some or all of the other four storm beaches
have cultural material incorporated in them. This assumption has yet to be tested. In general terms material associated with the different beaches can be used to build a local sequence of cultures. However, as was seen in testing at Locality 8, mixing of cultures could have occurred and certainly evidence outlining the structure of camp sites would have been destroyed by wave action. In short, the risks involved in interpreting the archaeological data would be increased. Despite these limitations the storm beaches are important features for the interpretation of the prehistoric Native use of the Narrows site in general. In planning the landscaping of this area it is recommended that:

1) the natural (geomorphic) features, specifically the beaches, be left intact because of their importance in the interpretation of Site FLNn-6;
2) "restoration" be confined to the addition, and not removal, of landscaping material such as earth, gravel, etc.;
3) if it is deemed necessary, the filling in of the low hollows between the individual beaches be kept to a minimum or avoided altogether, and
4) in view of the fact that artifacts of Native origin have been found on the surface of all the storm beaches and other artifacts near or on the surface have undoubtedly been overlooked, until such time as excavations can again be carried out here, the remaining artifacts should be protected by a layer of sod. This should provide some protection for the artifacts and features from the effects of tourist use. For this task ordinary garden rakes or similar tools can be used as their proper use will impart a minimal disturbance to any remaining artifacts.
Road Improvements

The highway leading to the Narrows Campgrounds cuts through the part of Site FlNn-6 located on the main terrace, thereby dividing it into Locality 4 on the south and Locality 7 in the northwest half. The road is narrow and any attempt to widen it would mean further destruction to part of the site. In terms of importance the main terrace appears to have been the favoured area for occupation by prehistoric peoples. Their campsite debris literally extends continuously along the escarpment edge of the terrace and most of the cultural material is confined to within a few centimeters of the surface. Should road improvements be carried out here two possible courses of action present themselves:

1) total excavation of the endangered area, or
2) building up the road so that the endangered portion of the site is protected by a layer of gravel or earth.

It is recommended that the second alternative be followed since it is not known, without extensive testing, whether the site is sufficiently rich throughout to warrant the total excavation of the endangered area. Building up the sides of the road and protecting the endangered portion of the site by a layer of gravel is the more feasible approach and could be performed during the actual road improvement operations without the supervision of an archaeologist. Not all of a site is ever excavated and so the buried section, while rendered temporarily inaccessible for excavation, is at the same time protected by a means acceptable to archaeologists. When the search for the location of the historic building was carried out at Locality 4 one of the excavation units, Square 8S 16E, was deliberately located on the gravel surface road (Figure 44). Although the cellar of the historic building was subsequently found several (8) meters west of Square 8S 16E
the excavation of this square revealed that the 5 inch thick layer of gravel capping the service road had acted effectively, preventing disturbance of historic and prehistoric remains here. There had been some disturbance but it was caused prior to the placement of the gravel.

Archaeological Development
The recommendations proposed for the archaeological development of Site FlNn-6 (the Narrows Site) have purposely been deferred to the last because of the marked difference in the recommendations proposed for this site compared to those proposed for the other sites. The basis on which this site was evaluated was outlined in a preceding section. At the time of writing it is the most significant archaeological site located within the boundaries of Prince Albert National Park.

Recommendations are presented here which may serve as guidelines for the anticipated development of this archaeological site. The basic concept, which is based on currently available data on this site, is that archaeological investigation and development of FlNn-6 be such that features of archaeological interest be located and left in situ for the purpose of forming a focal point at which an interpretive center in the form of building or shelter be located. The building, while serving to protect the exposed archaeological features, will also function as an interpretive center presenting to the public an interpretation of the human and natural history of the Narrows area. Material and data derived from other parts of FlNn-6 as well as from other sites within Prince Albert National Park could supplement the display of in situ archaeological features and materials to present synchronic and diachronic interpretations of man's use of this area.
The functions of interpretive centers are in keeping with the role of National Parks, outlined in a general statement on National Parks policies, as institutions for educating the public in the human and natural history of the areas encompassed by the various National Parks (Anonymous 1969). The Provisional Master Plan for Prince Albert National Park (Anonymous n.d.), in more specific terms, calls for the establishment of interpretive centers as the means through which part of this role of public education is achieved.

It should be mentioned that this also is one possible route for development of the archaeological site; one which maximizes the potentials offered, and a route in which the limitations of time and expenses are secondary. The adoption of this approach could mean that the collection and addition of supplementary data could be made an ongoing concern.

Nowhere is it suggested that the development of this site achieve priority over the salvage of endangered sites within Prince Albert National Park. It is recommended that:

Both the historic and prehistoric archaeological features that are known to exist, and those that are yet to be located on Locality 4 (i.e., through horizontal or deeper excavations) be the focal point on which any interpretive center erected as part of the archaeological development of Site FlNn-6 be established.

The position of Locality 4 in relation to the total site is shown on the map of the Narrows Site (Figures 25 and 26). It is the lakeside portion of the main terrace on which three of the cabins of the Narrows Cabin-Store Complex had been located. The soil is sandy and well drained. Locality 4 is bound by the main highway to the west, the edge of the terrace on the east and the forest part of the terrace to the south. The cleared section of Locality 4 has a maximum north-south length of 51 meters and an east-west breadth of 33 meters (Figure 46).
The archaeological features referred to are the historic cellar which occurs in Squares 8S 20E, 8S 21E, 7S 20E and 7S 21E and the two prehistoric fire hearths and associated lithic materials uncovered in Squares 5S 21E and 8S 22E. These are the most "spectacular" archaeological finds one could expect to find at Site FlNn-6 (Figures 39, 44 to 48).

The historic cellar (2.5 meters by 2.25 meters) is located 6 meters from the edge of the terrace. It is also 0.5 meters south of Square 5S 21E and 1.5 meters west of Square 8S 22E. Composite scattergrams showing the concentration of Aboriginal material uncovered in these two test pits were included with the Preliminary Report for 1973. Excavations here were halted following the discovery of the Hudson's Bay Company cellar without having reached the bottom of the culture-bearing deposits. In Squares 8S 22E and 5S 21E, excavations were terminated at 8 cm below surface and at 11 cm below surface, respectively, with the material that had been exposed left in situ, photographed, a plan drawn and then covered with a sheet of heavy gauge polyethylene and earth. This material which has been exposed and left in situ can be identified on the composite scattergrams by the dashed lines. In Square 1S 21E cultural material started to diminish in quantity at 15 cm below the surface. A similar situation was observed in Square 8S 16E and probably exists in the area adjacent to the historic cellar.

In 5S 21E, what appears to be a prehistoric fire hearth and a lithic workshop was starting to emerge in a level 5 to 10 cm below the surface, and with further horizontal excavations it seems that the parameters of this feature could be recognized. Some of the stones of the possible fire hearth appear to have been moved around during the normal course of activities of the past occupants. What may be another feature resulting from Aboriginal occupation of the area was found in
the southwest section of Square 8S 22E although it is not well defined. It should be mentioned here that tourists who stopped at the site were amazed at seeing the archaeological material in situ and having it interpreted to them even though often the material that was viewed comprised a dis-arrayed mass of lithics.

The close horizontal proximity of the historic and prehistoric features to each other makes it possible to display elements of both White and Native history in situ in the same building and would minimize the fact that any undue bias was shown favouring the history of either group.

Another factor favouring Locality 4 as the location for an interpretive center is that it is between Waskesiu Lake and the main highway and is a short walk from the planned recreation area which would cover the former Store-Cabin Complex site. Below the main terrace the area is near lake level and here, although archaeological resources are known to exist (such as those indicated in testing of the fifth storm beach at Locality 8), material is not as abundant and features such as do exist on the main terrace have probably been destroyed by wave action. Locating the interpretive center on the main terrace in the vicinity of Forsman's 1971 Test Area, while limiting the material that could be exposed and left in place to Native material, would call for either the building of a parking lot on-site or at the recreation area across the highway, thereby creating obstacles to traffic on the main highway.

Perhaps the most important factor favouring the establishment of an interpretive center on Locality 4 is that members of the public can witness first hand and appreciate the strategic location of a prehistoric campsite and an historic fur trade post. The fire hearths that were emerging through the excavations in Square 5S 21E and in the southwest quarter of Square 8S 22E were probably the centers around which much
of the domestic and maintenance activities of the Native occupants took place. The working of lithic material into tools seems to have been a major activity around the feature located in 5S 21E. During the fur trade, the focus of Native and White activities and interaction was at the post.

The Narrows, with its broad range of biotic and non-biotic (i.e., lithics, etc.) resources seems to have been more intensively occupied by past Native groups from both Plains and Boreal Forest regions. During the later phase of the fur trade era independent and Hudson's Bay Company traders became established at the Narrows. From the location of the cellar on Locality 4 one can easily understand the reasoning which led to the building of the post on this spot. First, it offered a commanding view of the southern part of Waskesiu Lake "as far as the eye could see"; second, from this spot traffic coming from the northwestern part of the lake bound either for the Hudson's Bay Company post or for the independent trader's post on the north side of the Narrows (its location now confirmed by the presence of square nails) could be observed; and finally, it was located adjacent to a site at which the Native people traditionally congregated at certain times of the year.

The sandy matrix of Locality 4 poses certain problems which have to be overcome if the archaeological features are going to be developed into in situ objects for display. Sand lacks the qualities of cohesion which a clay matrix has. Therefore, if the plans call for the display of a feature having vertical extent, such as a portion of the excavated cellar, the walls of the cellar would have to be reinforced with an additive to prevent collapse of the feature. Then, any planning would have to consider the control of biochemical, physical and cultural operatives such as temperature, moisture, rodents, vandalism, etc.
Because of the fact that the \textit{in situ} features form only a small segment of the total picture of either Native or White culture, it is recommended that:

The purpose of the interpretive center be also that of an institution conveying to the public through the display of other archaeological, ethnological and historical material along with auxiliary data provided by the natural sciences, (a) at a synchronic level, the adaptations made by cultural groups to changing seasonal resources, and (b) on a diachronic level, the changes both in man/land and intragroup relationships from the first inhabitants of the area to the end of the fur trade at the beginning of this century.

The material and data already collected from the Narrows archaeological site could be used towards the partial realization of these two objectives. Although not exhausting all the possibilities, the following statements illustrate the types of general observations that could be made with the existing data:

1) Native groups over the last 4,000 - 5,000 years frequented the Narrows area;

2) on the basis of only one Agate Basin point found at Waskesiu Beach, human occupation of Prince Albert National Park may extend 8,000 - 9,000 years;

3) traces of both Plains and Boreal Forest oriented groups are found at FlNn-6;

4) at least two different pottery making groups occupied the site;

5) a multiplicity of human activities was carried out here, from the procurement of food and lithic resources to the processing of them for everyday needs and uses, and

6) the Narrows Site figured importantly in the social interaction between Native groups and, later, between Native peoples and the White fur traders.
Neither of the two objectives proposed in the above recommendation could be fully realized with the data and material limited to that obtained from Site FLNn-6 alone. While admittedly it would show the various man/land relationships, it would not show all the major ones. First of all, ethnological studies carried out among hunting-gathering-fishing peoples point out the fact that the majority of them followed a pattern of transhumance exploiting the various resources at different places at different times of the year. Although the Narrows Area is rich in resources, it is more probable that the area was not continuously inhabited year round, and that other sites may have figured more importantly at certain times of the year. In other words, the entire range of the significant behavior relevant for the reconstruction of the lifeways of any one culture group was probably seldom expressed at the Narrows area.

As an example of this, one cannot effectively understand the implications of the fur trade by narrowing the scope of interest to simply the Hudson's Bay Company involvement at the Narrows. In reality it was a segment of a broad economic system with implications extending beyond National boundaries. Similarly, the economic systems of past Native peoples extended beyond the vicinity of the Narrows, probably encompassing the northern lakes and the southern grasslands.

The second problem arises from the attempts to isolate the different cultures represented at Site FLNn-6. Because of the absence of sedimentation, the entire range of human history on the main terrace is confined to within a few inches of the surface of the site and mixing of components has undoubtedly taken place. The recommendation presented in the Gryba (1973) report relating to the storm beaches located below the main terrace was made to show to what extent this portion of the site could be utilized towards the establishment
of a local culture sequence. Here, too, the probability of mixing exists. To obtain single components, other sites in the Park could be excavated to provide isolated pure samples. Two sites have been suggested which may serve this purpose. These are sites FlNn-101 and FlNn-51 both of which are in the South Bay area near the southeast end of Waskesiu Lake. In light of statements made earlier in the section concerned with the basis on which the archaeological resources are evaluated, in regard to the general nature of most of the sites seen, claiming with confidence that a particular site such as FlNn-101 is a single component one may be an overstatement. This could result in gross errors in interpretation.

Finally, it is doubtful that a complete culture history of the Park or the Narrows area could be reconstructed from just the data contained at FlNn-6. Given the limitations of the data, one would always question any proposed chronology.

For the aforementioned reasons, it is recommended that:

The scope of archaeological investigation and development be made broad enough to include relevant data and information from other parts of Prince Albert National Park and the region adjacent to the Park.

Implicit in this recommendation is that the interpretive center should have a dynamic aspect. The accumulation of new data resulting from additional archaeological work within the Park or from outside the Park will lead to a better understanding of the culture history of the Boreal Forest region which to date has received only a minimum of archaeological attention. This would require that, since the purpose of the interpretive center is one of disseminating information to the public, the archaeological information contained at the center be continuously revised to meet this end.
Appendix A. Section 3 of the Contract Specifying the Project Requirements of the 1973 Archaeological Survey of Prince Albert National Park.

More specifically, but without limiting the generality of the foregoing, the contractor shall:

3.1 Conduct a survey and reconnaissance of archaeological sites in the project area.
3.2 Conduct all required salvage of the above sites.
3.3 Complete curatorial identification of salvage artifacts excavated in 3.2 above. These artifacts will be labelled and described for return to the Park Interpretation Section.
3.4 Document photographically (black and white) all significant archaeological sites and artifacts examined during the course of this research program.
3.5 Submit a sites location map for the project area at the largest possible scale; such a map will show all areas surveyed regardless of whether or not the sites were identified.
3.6 From the results of this study, discuss the known archaeology of Prince Albert National Park. To complement this description, outline an archaeological management program which could be effectively used to ensure protection of these valuable Park resources. Relate the historical use of the Park to the surrounding area, including comments on recognized cultural traditions, major time sequences, events, etc.
3.7 Determine precisely the impact of proposed developments on the sites identified and, where possible, make recommendations regarding areas where development should be avoided.

3.8 Identify any areas where archaeological material may be used for the development of interpretive exhibits.

3.9 Compile a bibliography of relevant articles, books, journals, etc., relating to the human history of Prince Albert National Park.
Appendix B. Artifacts of Native Origin Recovered During the 1973 Excavations of Site FlNn-6, Localities 4 and 8.

<table>
<thead>
<tr>
<th>Catalogue Number</th>
<th>Context</th>
<th>Artifact</th>
<th>Material</th>
<th>Length in mm</th>
<th>Width in mm</th>
<th>Thickness in mm</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLNn-6/1547</td>
<td>Loc. 8 T. P. 1 40-50 cm b.s.</td>
<td>bipolar core</td>
<td>quartz</td>
<td>32.0</td>
<td>20.5</td>
<td>11.0</td>
<td>in beach deposits</td>
</tr>
<tr>
<td>FLNn-6/1550</td>
<td>Loc. 8 T. P. 1 40-50 cm b.s.</td>
<td>bipolar core</td>
<td>quartz</td>
<td>51.0</td>
<td>27.5</td>
<td>15.0</td>
<td>in beach deposits</td>
</tr>
<tr>
<td>FLNn-6/1553</td>
<td>Loc. 8 T. P. 1 40-50 cm b.s.</td>
<td>point</td>
<td>quartz</td>
<td>27.0</td>
<td>17.5</td>
<td>7.0</td>
<td>in water-worked sand</td>
</tr>
<tr>
<td>FLNn-6/1560</td>
<td>Loc. 8 T. P. 2 level cm b.s.</td>
<td>crude biface</td>
<td>quartz</td>
<td>50.0</td>
<td>26.5</td>
<td>14.0</td>
<td>in water-worked sand</td>
</tr>
<tr>
<td>FLNn-6/1571</td>
<td>Loc. 8 T. P. 2 0-5 cm b.s.</td>
<td>bipolar core</td>
<td>chert</td>
<td>21.0</td>
<td>14.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1579</td>
<td>Loc. 8 T. P. 2 5-10 cm b.s.</td>
<td>bipolar core</td>
<td>chert</td>
<td>23.0</td>
<td>12.0</td>
<td>7.0</td>
<td>grey sandy clay</td>
</tr>
<tr>
<td>FLNn-6/1595</td>
<td>Loc. 8 T. P. 3 0-5 cm b.s.</td>
<td>retouched flake</td>
<td>chert</td>
<td>21.5</td>
<td>17.5</td>
<td>4.5</td>
<td>Ah horizon</td>
</tr>
<tr>
<td>FLNn-6/1603</td>
<td>Loc. 8 T. P. 3 5-10 cm b.s.</td>
<td>end scraper</td>
<td>chert</td>
<td>19.5</td>
<td>20.5</td>
<td>7.0</td>
<td>in grey sand</td>
</tr>
<tr>
<td>FLNn-6/1620</td>
<td>Loc. 4 surface middle cabin</td>
<td>retouched flake (?)</td>
<td>basalt</td>
<td>44.5</td>
<td>44.0</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1629</td>
<td>Loc. 4 surface middle cabin</td>
<td>bipolar core</td>
<td>chert</td>
<td>26.0</td>
<td>19.5</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1659</td>
<td>Loc. 4 T. P. 1 level F</td>
<td>bipolar core</td>
<td>chert</td>
<td>55.5</td>
<td>31.0</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1661</td>
<td>Loc. 4 T. P. 1 level F</td>
<td>massive core</td>
<td>quartzite</td>
<td>123.0</td>
<td>80.0</td>
<td>71.5</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1665</td>
<td>Loc. 4 T. P. 2 level A</td>
<td>end scraper</td>
<td>chert</td>
<td>25.5</td>
<td>20.5</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1700</td>
<td>Loc. 4 T. P. 2 level B</td>
<td>body</td>
<td>clay</td>
<td>25.0</td>
<td>17.0</td>
<td>6.0</td>
<td>Laurel Plain</td>
</tr>
<tr>
<td>FLNn-6/1711</td>
<td>Loc. 4 T. P. 2 level C</td>
<td>bipolar core</td>
<td>quartz</td>
<td>67.0</td>
<td>53.0</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1730</td>
<td>Loc. 4 T. P. 3 level A</td>
<td>bipolar core</td>
<td>chert</td>
<td>31.0</td>
<td>26.0</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1740</td>
<td>Loc. 4 T. P. 3 level B</td>
<td>body</td>
<td>clay</td>
<td>39.5</td>
<td>32.0</td>
<td>8.0</td>
<td>Laurel Plain</td>
</tr>
<tr>
<td>FLNn-6/1745</td>
<td>Loc. 4 T. P. 3 level C</td>
<td>retouched flake</td>
<td>chert</td>
<td>27.0</td>
<td>14.0</td>
<td>5.5</td>
<td>retouch accidental (?)</td>
</tr>
<tr>
<td>FLNn-6/1748</td>
<td>Loc. 4 T. P. 3 level C</td>
<td>body</td>
<td>clay</td>
<td>19.0</td>
<td>13.5</td>
<td>4.5</td>
<td>Laurel Plain</td>
</tr>
<tr>
<td>FLNn-6/1749</td>
<td>Loc. 4 T. P. 3 level C</td>
<td>bipolar core</td>
<td>chert</td>
<td>43.0</td>
<td>28.0</td>
<td>23.5</td>
<td>flakes dispersed levels A-E</td>
</tr>
<tr>
<td>FLNn-6/1752</td>
<td>Loc. 4 T. P. 3 level D</td>
<td>rim</td>
<td>clay</td>
<td>26.5</td>
<td>20.0</td>
<td>5.0</td>
<td>plain treatment</td>
</tr>
<tr>
<td>FLNn-6/1753</td>
<td>Loc. 4 T. P. 3 level D</td>
<td>retouched flake</td>
<td>shale</td>
<td>33.0</td>
<td>20.0</td>
<td>5.0</td>
<td>bifacial retouch</td>
</tr>
<tr>
<td>FLNn-6/1758</td>
<td>Loc. 4 T. P. 3 worked pebble</td>
<td></td>
<td></td>
<td>30.0</td>
<td>28.5</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>FLNn-6/1800</td>
<td>Loc. 4 Square 18 21E</td>
<td>end scraper</td>
<td>chert</td>
<td>17.0</td>
<td>17.5</td>
<td>7.5</td>
<td>0-6 cm below surface</td>
</tr>
<tr>
<td>FLNn-6/1882 b</td>
<td>Loc. 4 Square 18 21E</td>
<td>bipolar core</td>
<td>chert</td>
<td>51.5</td>
<td>18.5</td>
<td>15.5</td>
<td>0-6 cm below surface</td>
</tr>
<tr>
<td>FLNn-6/1883</td>
<td>Loc. 4 Square 18 21E</td>
<td>bipolar core</td>
<td>quartz</td>
<td>41.5</td>
<td>31.0</td>
<td>28.5</td>
<td>0-6 cm below surface</td>
</tr>
<tr>
<td>FLNn-6/1896</td>
<td>Loc. 4 Square 18 21E</td>
<td>end scraper</td>
<td>chert</td>
<td>14.5</td>
<td>18.5</td>
<td>13.5</td>
<td>5-10 cm below surface</td>
</tr>
<tr>
<td>FLNn-6/1899</td>
<td>Loc. 4 Square 18 21E</td>
<td>core</td>
<td>quartz</td>
<td>81.5</td>
<td>75.0</td>
<td>57.0</td>
<td>10-15 cm below surface</td>
</tr>
<tr>
<td>FLNn-6/1890</td>
<td>Loc. 4 Square 18 21E</td>
<td>bipolar core</td>
<td>quartz</td>
<td>62.5</td>
<td>49.5</td>
<td>37.5</td>
<td>10-15 cm below surface</td>
</tr>
</tbody>
</table>
Appendix B.

<table>
<thead>
<tr>
<th>Loc./Square</th>
<th>Material</th>
<th>Size (mm)</th>
<th>Layer Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMN-6/1891</td>
<td>bipolar core</td>
<td>34.0</td>
<td>10-15 cm below surface</td>
</tr>
<tr>
<td>FMN-6/1907</td>
<td>bipolar core</td>
<td>51.5</td>
<td>0-5 cm below surface</td>
</tr>
<tr>
<td>FMN-6/1911</td>
<td>end scraper</td>
<td>13.5</td>
<td>0-5 cm below surface</td>
</tr>
<tr>
<td>FMN-6/1916</td>
<td>retouched flake</td>
<td>26.5</td>
<td>5-8 cm below surface</td>
</tr>
<tr>
<td>FMN-6/2051</td>
<td>drill fragment</td>
<td>16.5</td>
<td>in cellar fill</td>
</tr>
<tr>
<td>FMN-6/2055</td>
<td>retouched flake</td>
<td>10.0</td>
<td>steep, unifacial</td>
</tr>
<tr>
<td>FMN-6/2058</td>
<td>bipolar core</td>
<td>55.0</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2058</td>
<td>bipolar core</td>
<td>56.0</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2058</td>
<td>bipolar core</td>
<td>35.5</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2058</td>
<td>bipolar core</td>
<td>46.0</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2058</td>
<td>bipolar core</td>
<td>45.0</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2058</td>
<td>utilized flake</td>
<td>58.5</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2060</td>
<td>bipolar core</td>
<td>14.0</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2062</td>
<td>bipolar core</td>
<td>14.0</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2064</td>
<td>end scraper</td>
<td>24.5</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2065</td>
<td>retouched flake</td>
<td>19.0</td>
<td>0-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2066</td>
<td>bipolar core</td>
<td>48.5</td>
<td>5-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2066</td>
<td>bipolar core</td>
<td>33.0</td>
<td>5-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2066</td>
<td>bipolar core</td>
<td>40.5</td>
<td>5-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2066</td>
<td>bipolar core</td>
<td>42.0</td>
<td>5-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2066</td>
<td>bipolar core</td>
<td>61.0</td>
<td>5-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2068</td>
<td>bipolar core</td>
<td>63.5</td>
<td>5-10 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2069</td>
<td>bipolar core</td>
<td>56.5</td>
<td>10-20 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2069</td>
<td>bipolar core</td>
<td>64.0</td>
<td>10-20 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2069</td>
<td>bipolar core</td>
<td>51.0</td>
<td>10-20 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2072</td>
<td>bipolar core</td>
<td>74.0</td>
<td>10-20 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2073</td>
<td>bipolar core</td>
<td>33.0</td>
<td>20-30 cm below Ah</td>
</tr>
<tr>
<td>FMN-6/2075</td>
<td>bipolar core</td>
<td>46.0</td>
<td>20-30 cm below Ah</td>
</tr>
<tr>
<td></td>
<td>bipolar core</td>
<td>96.5</td>
<td>20-30 cm below Ah</td>
</tr>
</tbody>
</table>
Appendix C. Artifacts of Eurocanadian origin recovered during 1973 from Site FlNn-6, Localities 4 and 8.

<table>
<thead>
<tr>
<th>Catalogue Number</th>
<th>Context</th>
<th>Artifact</th>
<th>Material</th>
<th>Length</th>
<th>Width</th>
<th>Thickness</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlNn-6/1630</td>
<td>Loc. 4 surface</td>
<td>modern</td>
<td>clay</td>
<td>73.0</td>
<td>25.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>north cabin</td>
<td>ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1617</td>
<td>Loc. 4 surface</td>
<td>curved</td>
<td>iron</td>
<td>19.5</td>
<td>5.5</td>
<td>0.5</td>
<td>badly rusted</td>
</tr>
<tr>
<td></td>
<td>middle cabin</td>
<td>metal band</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1632</td>
<td>Loc. 4 surface</td>
<td>cartridge</td>
<td>brass</td>
<td>33.5</td>
<td>13.5</td>
<td>12.0</td>
<td>44 cal. WCF</td>
</tr>
<tr>
<td></td>
<td>south cabin</td>
<td>casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1639</td>
<td>Loc. 4 T.P. 1</td>
<td>historic</td>
<td>clay</td>
<td>22.0</td>
<td>15.0</td>
<td>3.0</td>
<td>blue on white design</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1650</td>
<td>Loc. 4 T.P. 1</td>
<td>historic</td>
<td>clay</td>
<td>46.5</td>
<td>43.0</td>
<td>6.0</td>
<td>3 articulating pieces</td>
</tr>
<tr>
<td>level C</td>
<td></td>
<td>ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1651</td>
<td>Loc. 4 T.P. 1</td>
<td>cartridge</td>
<td>clay</td>
<td>13.5</td>
<td>7.0</td>
<td>1.5</td>
<td>2 small pieces</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1666</td>
<td>Loc. 4 T.P. 2</td>
<td>cartridge</td>
<td>brass</td>
<td>33.5</td>
<td>13.5</td>
<td>12.5</td>
<td>44 cal. CF UMC</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1667</td>
<td>Loc. 4 T.P. 2</td>
<td>lead</td>
<td>lead</td>
<td>24.0</td>
<td>24.0</td>
<td>0.5</td>
<td>from shell reloading</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>scrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1672</td>
<td>Loc. 4 T.P. 2</td>
<td>lead</td>
<td>lead</td>
<td>13.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>scrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1675</td>
<td>Loc. 4 T.P. 2</td>
<td>glass</td>
<td>glass</td>
<td>48.0</td>
<td>16.0</td>
<td>2.5</td>
<td>window pane</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1676</td>
<td>Loc. 4 T.P. 2</td>
<td>metal</td>
<td>iron</td>
<td>11.5</td>
<td>20.0</td>
<td>1.5</td>
<td>cut from scrap #1735</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>scrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1680</td>
<td>Loc. 4 T.P. 2</td>
<td>lead</td>
<td>lead</td>
<td>11.0</td>
<td>10.5</td>
<td>4.0</td>
<td>from shell reloading</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>scrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1683</td>
<td>Loc. 4 T.P. 2</td>
<td>lead</td>
<td>lead</td>
<td></td>
<td></td>
<td></td>
<td>small fragment</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>scrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1694</td>
<td>Loc. 4 T.P. 2</td>
<td>metal</td>
<td>brass</td>
<td>45.0</td>
<td>45.0</td>
<td>0.5</td>
<td>modern</td>
</tr>
<tr>
<td>level B</td>
<td></td>
<td>screen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1698</td>
<td>Loc. 4 T.P. 2</td>
<td>metal</td>
<td>brass</td>
<td>14.5</td>
<td>14.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>level B</td>
<td></td>
<td>ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>blue glass</td>
</tr>
<tr>
<td>FlNn-6/1699</td>
<td>Loc. 4 T.P. 2</td>
<td>trade</td>
<td>glass</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>level B</td>
<td></td>
<td>bead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1712</td>
<td>Loc. 4 T.P. 2</td>
<td>cartridge</td>
<td>brass</td>
<td>15.0</td>
<td>10.0</td>
<td>8.5</td>
<td>rim fire</td>
</tr>
<tr>
<td>level C</td>
<td></td>
<td>casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1734</td>
<td>Loc. 4 T.P. 3</td>
<td>bottle</td>
<td>glass</td>
<td>9.0</td>
<td>5.5</td>
<td>1.0</td>
<td>clear glass</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1735</td>
<td>Loc. 4 T.P. 3</td>
<td>metal</td>
<td>iron</td>
<td>281.5</td>
<td>38.5</td>
<td>1.75</td>
<td>see #1676</td>
</tr>
<tr>
<td>level A</td>
<td></td>
<td>scrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1754</td>
<td>Loc. 4 T.P. 3</td>
<td>pipe</td>
<td>clay</td>
<td>11.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>level D</td>
<td></td>
<td>stem fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1755</td>
<td>Loc. 4 T.P. 3</td>
<td>button</td>
<td>glass (?)</td>
<td>13.0</td>
<td>13.0</td>
<td>3.0</td>
<td>modern</td>
</tr>
<tr>
<td>level D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1878</td>
<td>Loc. 4</td>
<td>screw</td>
<td>iron</td>
<td>38.0</td>
<td>12.0</td>
<td>6.5</td>
<td>modern</td>
</tr>
<tr>
<td>Square 1S 21E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1879</td>
<td>Loc. 4</td>
<td>cartridge</td>
<td>brass</td>
<td>48.5</td>
<td>17.5</td>
<td>7.5</td>
<td>shotgun</td>
</tr>
<tr>
<td>Square 1S 21E</td>
<td></td>
<td>casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1906</td>
<td>Loc. 4</td>
<td>glass</td>
<td>glass</td>
<td>14.5</td>
<td>8.5</td>
<td>2.0</td>
<td>window glass</td>
</tr>
<tr>
<td>0-5 cm</td>
<td></td>
<td>fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square 5S 21E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1917</td>
<td>Loc. 4</td>
<td>glass</td>
<td>glass</td>
<td>70.5</td>
<td>46.5</td>
<td>2.0</td>
<td>articulated window glass</td>
</tr>
<tr>
<td>5-8 cm</td>
<td></td>
<td>fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square 5S 21E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1968</td>
<td>Loc. 4</td>
<td>glass</td>
<td>glass</td>
<td>52.0</td>
<td>25.5</td>
<td>2.0</td>
<td>indow glass</td>
</tr>
<tr>
<td>Square 8S 22E</td>
<td></td>
<td>fragments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlNn-6/1969</td>
<td>Loc. 4</td>
<td>lead</td>
<td>lead</td>
<td>33.5</td>
<td>25.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Square 8S 22E</td>
<td></td>
<td>scrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C.

FLNn-6/1983	Loc. 4	Square 8S 21E	7 glass fragments	glass	29.5	10.5	2.5	max. & min.
FLNn-6/1983	Loc. 4	Square 8S 21E	7 glass fragments	glass	9.0	8.0	2.0	window glass
FLNn-6/1991	Loc. 4	Square 8S 21E	glass fragment	glass	11.0	6.5	2.0	window glass
FLNn-6/2004	Loc. 4	Square 8S 20E	window glass	glass	19.5	12.0	2.0	E 1/2 of square
FLNn-6/2005	Loc. 4	Square 8S 20E	window glass	glass	9.5	6.0	2.0	0-3 cm b.s.
FLNn-6/2008	Loc. 4	Square 8S 20E	window glass	glass	28.5	12.5	2.5	in cellar fill
FLNn-6/2013	Loc. 4	Square 8S 20E	window glass	glass	12.0	6.5	2.0	fill
FLNn-6/2010	Loc. 4	Square 8S 20E	lead	lead	19.0	17.5	0.5	in cellar fill
FLNn-6/2012	Loc. 4	Square 8S 20E	historic ceramic	clay	21.5	12.0	3.0	in cellar fill
FLNn-6/2014	Loc. 4	Square 8S 20E	carpenter pencil	stone (?)	39.0	5.0	4.5	modern (?)
FLNn-6/2015	Loc. 4	Square 8S 20E	bead	glass	1.5	1.5	1.0	
FLNn-6/2019	Loc. 4	Square 8S 20E	shot	lead	4.5	4.5	4.5	in cellar fill
FLNn-6/2021	Loc. 4	Square 8S 20E	shot	lead	4.5	4.5	4.5	in cellar fill
FLNn-6/2022	Loc. 4	Square 8S 20E	bead	glass	1.5	1.5	1.0	in cellar fill
FLNn-6/2023	Loc. 4	Square 8S 20E	bead	glass	1.5	1.5	1.5	in cellar fill
FLNn-6/2026	Loc. 4	Square 8S 20E	window glass	glass	13.5	8.5	2.0	in cellar fill
FLNn-6/2032	Loc. 4	Square 8S 20E	historic ceramic	clay	13.5	12.0	2.5	plain, white
FLNn-6/2032	Loc. 4	Square 8S 20E	window glass	glass	28.5	0.5	2.5	in cellar fill
FLNn-6/2041	Loc. 4	Square 8S 16E	historic ceramic	clay	13.5	12.0	2.5	plain, white
Appendix D. Hand-wrought rectangular-shanked nails from Site FlNn-6, Locality 4: Measurements of selected variables (in millimeters).

<table>
<thead>
<tr>
<th>Catalogue Number</th>
<th>Context</th>
<th>Length</th>
<th>Width</th>
<th>Thickness</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlNn-6/1615</td>
<td>surface of middle cabin site (former bungalow cabins)</td>
<td>79.0</td>
<td>6.5</td>
<td>4.5</td>
<td>complete</td>
</tr>
<tr>
<td>FlNn-6/1616</td>
<td>surface of middle cabin site</td>
<td>34.5</td>
<td>3.5</td>
<td>3.0</td>
<td>broken</td>
</tr>
<tr>
<td>FlNn-6/1633</td>
<td>surface of south cabin site</td>
<td>49.0</td>
<td>4.5</td>
<td>2.5</td>
<td>complete</td>
</tr>
<tr>
<td>FlNn-6/1649</td>
<td>Test Pit #1 Level C</td>
<td>34.0</td>
<td>5.0</td>
<td>4.5</td>
<td>midsection</td>
</tr>
<tr>
<td>FlNn-6/1668</td>
<td>Test Pit #2 level A</td>
<td>103.0</td>
<td>8.0</td>
<td>5.0</td>
<td>fragment, bent</td>
</tr>
<tr>
<td>FlNn-6/1669</td>
<td>Test Pit #2 level A</td>
<td>79.0</td>
<td>6.5</td>
<td>4.5</td>
<td>complete, bent</td>
</tr>
<tr>
<td>FlNn-6/1670</td>
<td>Test Pit #2 level A</td>
<td>26.5</td>
<td>6.5</td>
<td>4.5</td>
<td>fragment, upper part</td>
</tr>
<tr>
<td>FlNn-6/1671</td>
<td>Test Pit #2 level A</td>
<td>53.0</td>
<td>5.0</td>
<td>3.5</td>
<td>fragment, tip of #1670</td>
</tr>
<tr>
<td>FlNn-6/1673</td>
<td>Test Pit #2 level A</td>
<td>51.0</td>
<td>4.5</td>
<td>3.0</td>
<td>complete, bent</td>
</tr>
<tr>
<td>FlNn-6/1674</td>
<td>Test Pit #2 level A</td>
<td>51.0</td>
<td>4.5</td>
<td>2.5</td>
<td>complete</td>
</tr>
<tr>
<td>FlNn-6/1687</td>
<td>Test Pit #2 level B</td>
<td>28.5</td>
<td>5.0</td>
<td>3.0</td>
<td>fragment, upper part</td>
</tr>
<tr>
<td>FlNn-6/1695</td>
<td>Test Pit #2 level B</td>
<td>24.5</td>
<td>4.5</td>
<td>3.5</td>
<td>midsection, bent</td>
</tr>
<tr>
<td>FlNn-6/1696</td>
<td>Test Pit #2 level B</td>
<td>50.0</td>
<td>4.0</td>
<td>3.5</td>
<td>complete, bent</td>
</tr>
<tr>
<td>FlNn-6/1697</td>
<td>Test Pit #2 level B</td>
<td>38.0</td>
<td>3.5</td>
<td>3.5</td>
<td>complete</td>
</tr>
<tr>
<td>FlNn-6/1733</td>
<td>Test Pit #3 level A</td>
<td>8.0</td>
<td>8.8</td>
<td>5.0</td>
<td>fragment</td>
</tr>
<tr>
<td>FlNn-6/1741</td>
<td>Test Pit #3 level B</td>
<td>40.0</td>
<td>3.5</td>
<td>2.5</td>
<td>complete, bent</td>
</tr>
<tr>
<td>FlNn-6/1742</td>
<td>Test Pit #3 level B</td>
<td>30.5</td>
<td>6.5</td>
<td>4.0</td>
<td>midsection</td>
</tr>
<tr>
<td>FlNn-6/1905</td>
<td>Square 58 21E east-west trench</td>
<td>71.5</td>
<td>8.0</td>
<td>5.0</td>
<td>tip missing</td>
</tr>
<tr>
<td>FlNn-6/1942</td>
<td>Square 7S 20E east-west trench</td>
<td>77.5</td>
<td>6.5</td>
<td>4.5</td>
<td>complete</td>
</tr>
<tr>
<td>FlNn-6/1943</td>
<td>Square 7S 20E east-west trench</td>
<td>54.0</td>
<td>4.5</td>
<td>3.0</td>
<td>midsection</td>
</tr>
<tr>
<td>FlNn-6/1956</td>
<td>Square 8S 22E E 1/2 0-4 cm b.s.</td>
<td>35.0</td>
<td>4.5</td>
<td>4.0</td>
<td>midsection</td>
</tr>
<tr>
<td>FlNn-6/1970</td>
<td>Square 8S 22E E 1/2 surface</td>
<td>30.0</td>
<td>4.5</td>
<td>4.0</td>
<td>midsection</td>
</tr>
<tr>
<td>FlNn-6/1989</td>
<td>Square 8S 21E W 1/2 0-4 cm b.s.</td>
<td>34.0</td>
<td>6.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>FlNn-6/2020</td>
<td>Square 8S 21E W 1/2 cellar fill</td>
<td>55.0</td>
<td>8.0</td>
<td>4.5</td>
<td>fragment, upper part</td>
</tr>
<tr>
<td>FlNn-6/2006</td>
<td>Square 8S 20E E 1/2 cellar fill</td>
<td>55.0</td>
<td>8.0</td>
<td>4.5</td>
<td>fragment, upper part</td>
</tr>
<tr>
<td>FlNn-6/2007</td>
<td>Square 8S 20E E 1/2 cellar fill</td>
<td>45.5</td>
<td>6.0</td>
<td>4.0</td>
<td>fragment, upper part</td>
</tr>
<tr>
<td>FlNn-6/2009</td>
<td>Square 8S 20E E 1/2 cellar fill</td>
<td>81.0</td>
<td>6.0</td>
<td>4.0</td>
<td>complete</td>
</tr>
<tr>
<td>FlNn-6/2011</td>
<td>Square 8S 20E E 1/2</td>
<td>30.5</td>
<td>6.5</td>
<td>4.0</td>
<td>fragment, upper part</td>
</tr>
<tr>
<td>FlNn-6/2048</td>
<td>Square 8S 16E 0-10 cm below original surface</td>
<td>17.0</td>
<td>5.5</td>
<td>3.5</td>
<td>fragment, upper part</td>
</tr>
<tr>
<td>FlNn-6/2049</td>
<td>Square 8S 16E 0-10 cm below original surface</td>
<td>25.0</td>
<td>5.5</td>
<td>3.5</td>
<td>midsection</td>
</tr>
<tr>
<td>FlNn-6/2050</td>
<td>Square 8S 16E 0-10 cm below original surface</td>
<td>47.5</td>
<td>4.5</td>
<td>3.5</td>
<td>midsection</td>
</tr>
</tbody>
</table>
Bibliography

Anonymous
n.d.
Prince Albert National Park Provisional Master Plan.
National and Historic Parks Branch, Department of Indian
Affairs and Northern Development.
1969
National Parks Policy. National and Historic Parks Branch,
Department of Indian Affairs and Northern Development.

Atton, F. T.
1969
"Fish, Amphibians and Reptiles." In Atlas of Saskatchewan.
Edited by J. H. Richards and K. I. Fung. Modern Press,
Saskatoon.

Bird, R. D.
1961
"Ecology of the Aspen Parkland of Western Canada." Canada
Department of Agriculture, Publication 1066. Ottawa.

Boon, T. C. B.
1962
The Anglican Church from the Bay to the Rockies: A History
of the Ecclesiastical Province of Rupert's Land and its
Diocese from 1820 to 1950. The Ryerson Press, Toronto.

Byres, A. R., W. G. E. Caldwell and W. O. Kupsch
1969
"Evolution of the Present Bedrock Surface." In Atlas of

Chakravarti, A. K.
1969

Christiansen, E. A.
1973

Copeland, R. T. and J. S. Rowe
1969

Damas, David (editor)
1969
"Contributions to Anthropology: Band Societies". National Museums of Canada Bulletin No. 228. Queen's Printer, Ottawa.

Dickson, Garry A.
1972
Dyck, Ian G.
1970
"Two Oxbow Settlement Types in Central Saskatchewan."
University of Saskatchewan, Saskatoon.

Edmunds, F. H.
1962
"Recession of the Wisconsin Glacier from Central Saskatchewan."

Fisher, Anthony D.
1973
"The Cree of Canada: Some Ecological and Evolutionary Considerations."
In Cultural Ecology: Readings on the Canadian Indians and Eskimos. Edited by Bruce Cox.
McClelland and Stewart, Toronto.

Forsman, Michael
1971
"Prince Albert National Park Archaeological Survey Season Summary Report."
Report submitted to Parks Canada, Prairie Region, Winnipeg.

Gryba, Eugene M.
1968
"A Possible Paleo-Indian and Archaic Site in the Swan Valley, Manitoba."
1972
Honors thesis, Department of
Anthropology, University of Alberta, Edmonton.
1973

Hines, Rev. J.
1915
The Red Indians of the Plains: Thirty Years' Missionary Experience in the Saskatchewan. Society for Promoting Christian Knowledge, London.

Hlady, Walter M.
1964
"Indian Migrations in Manitoba and the West." Historical and Scientific Society of Manitoba, Series III, No. 17. Winnipeg.
1970

Hlady, Walter M. and Gerry Kucera
1971

Holmes, W. H.
1919
Innis, Harold A.
1956

Jenness, Diamond
1932

Kehoe, Thomas F.
1964
"Middle Woodland Pottery from Saskatchewan." Plains Anthropologist, Vol. 9, No. 23.
1966a
1966b

Kehoe, Thomas F. and Alice B. Kehoe
1968

Kidd, Robert S.
1970
"Fort George and the Early Fur Trade in Alberta."
Provincial Museum and Archives of Alberta, Publication No. 2. Edmonton.
Kupsch, W. O.
1969

Leonoff, L. M.
1970

MacNeish, Richard S.
1958

Maher, W. J.
1969

Mandeville, M. D.
1973

Mayer-Oakes, W. J.
1967
"Prehistoric Human Population History of the Glacial Lake

1970

McConnell, J. G. and A. R. Turner

1969

McPhillips, Henry Thomas

1888

McPhillips' Alphabetical and Business Directory of the District of Saskatchewan, N.W.T., together with Brief Historical Sketches of Prince Albert, Battleford and Other Settlements in the District. The Progress Book and Job Office, Qu'Appelle, N. W. T.

Moss, H. C. and J. S. Clayton

1969

Mott, R. J.

1972

"Palynological Studies in Central Saskatchewan: Pollen Stratigraphy from Lake Sediment Sequences." Geological

Pettipas, Leo F.
1967
"Paleo-Indian Manifestations in Manitoba: their spatial and temporal Relationships with the Campbell Strandlines."
1970

Ray, Arthur
1970
1971

Reeves, Brian
1970
1973
Ritchie, J. C.
1967

Rowe, J. S. and G. W. Scotter
1973

Saskatchewan History
1963

Semenov, S. A.
1964

Service, Elman R.
1962

Syms, Leigh
1970
Walker, E.
1974

Wettlaufer, Boyd
1955

Wettlaufer, Boyd and W. J. Mayer-Oakes
1960

Whitaker, S. H. and E. A. Christiansen
1972

Wormington, H. M. and Richard G. Forbis
1965

Wright, H. E., Jr. and M. L. Heinselman (editors)
1973
"The Ecological Role of Fire in Natural Conifer Forests of Western and Northern North America." Quaternary Research (Special Issue), Vol. 3, No. 3.
Wright, J.
1971
"Cree Culture History in the Southern Indian Lake Region."