ARCHAEOLOGICAL MITIGATION AT THE PETERBOROUGH LIFT LOCK

by Janet J. Maltby

1986
Archaeological Mitigation at
The Peterborough Lift Lock
by Janet J. Maltby
1986
The Microfiche Report Series is intended for internal use by Environment Canada — Parks and is printed in limited numbers. These microfiche are distributed to various public depositories in Canada for use by interested individuals.

Documents are reproduced exactly as received and have not been edited.
Archaeological Mitigation at
The Peterborough Lift Lock
by Janet J. Maltby
1986
Archaeological Mitigation at
The Peterborough Lift Lock
by Jané J. Maltby

iv Abstract
v Acknowledgements
1 Introduction
3 Historical Background
8 The 1983 Survey - Methods
13 The 1983 Survey - Stratigraphy
13 Artifacts Recovered in 1983
17 Domestic Group
19 Structural Remains
21 Hardware Group
22 Personal Group
22 Results of the 1983 Survey
24 The 1984 Archaeological Testing
24 The Field Area (Sub-operation 40H2\)
26 The Restroom Area
27 Sub-operation 40H2B
31 Sub-operation 40H2D
31 Sub-operation 40H2C
32 Conclusions
Illustrations
2 1 Site plan showing the four areas of archaeological testing
4 2 General plan of the Trent Canal
5 3 Early stages of construction ca. 1897-1902
7 4 Dump site of siding etc. West side looking north
1902
10 5 Site plan showing coring program and areas of high artifact concentration
11 6 Coring in progress. Northern slope above marsh area, facing west
11 7 Cores in lower marsh area, facing west
12 8 Restroom area cores. Profiling in progress, facing northeast
14 9 Profiles of cores 346 and 285
15 10 Core profiles running north-south indicating original grade
16 11 Core profiles running east-west indicating original grade
25 12 Site plan showing 1984 excavations
28 13 North profile of 40H2B
30 14 A stratigraphic comparison of 40H2B and core profiles showing original grade
33 15 Roadway, gates, fences etc. at west side, looking south 1902
34 16 Ground plan of embankments 1899

Tables
18 1 Artifact Distribution Chart
20 2 Minimum Vessel Counts of Ceramic Wares
Abstract

In the spring of 1983, and again in 1984, archaeological testing was conducted at areas identified as possible building sites for the proposed activity centre at the Peterborough Lift Lock. The area of concern consisted of approximately 0.81 hectares (two acres) of land located south of Huntley Street and west of the lower part of the lock. Historical records suggested that this area could yield archaeological evidence pertaining to the construction period (1899-1904) of the hydraulic lift lock. The primary objective of the project was to assess the presence of historical resources within this area. A coring program was selected as a swift and effective method of testing the expansive building zone. A few "hotspots" or areas with high artifact concentration which could affect the placement of the activity centre, emerged during testing. The following spring and fall, after plans for the building had been approved, two areas identified as "hotspots" required further archaeological monitoring - the parking lot and core 317 which were to be levelled, and, the washroom area, where service lines to the activity centre were to be installed. The following is a brief report on the nature of these finds as well as recommendations concerning the preservation of historic resources in light of future site development.
Acknowledgements

The author would like to thank the following people for their help in the preparation and completion of this report; N. McMahon for her historical information regarding the construction of the Peterborough Lift Lock; S. Plousos and L. Jacobs for their aid in the artifact analysis; T. Pollard for her patience in typing the charts and tables. Lastly, thanks are extended to C. Phillips for her continual guidance and suggestions and to S. Smith for her editorial comments.
Introduction

The following report outlines the results of archaeological testing performed at the Peterborough Lift Lock during 1983 and 1984 and assesses the importance of these finds with regard to future site development, more specifically the location of the new activity centre. In the spring of 1983, a core sampling programme was conducted in four areas of the site (Fig. 1). Based on the results of these finds, archaeological testing was undertaken in the following year when construction for the new activity centre threatened areas where cultural resources were noted. In both instances, artifacts were collected and soil profiles were recorded for each of the cores and excavation units to ascertain their historical and archaeological significance. The assemblage of artifacts was examined to aid in dating and the determination of site activities. A reconstruction of the landscape of the area was gleaned by comparing the soil profiles of each area. The results of this testing program should be considered as site development progresses.
Figure 1. Site plan showing the four areas of archaeological testing (Drawing by Moore-George Associates for Parks Canada).
Historical Background

At its time of completion in 1904, the Peterborough Lift Lock was hailed as being the first hydraulic lock in North America to be constructed entirely of concrete and the largest of its kind in the world. Designed and constructed under the superintendence of Richard Rogers, the lock was built to alleviate the congestion in rail transportation at the turn of the century caused by the increased British demand for grain exports. The completion of the Trent Canal system would provide a through navigation from Lake Huron to Lake Ontario and a vast improvement in grain hauling capacity (Fig. 2). Rogers' realization that a conventional system of locks would not be economically viable (Passfield 1979: 580) caused him to search for a system in which a very great saving in time of transit could be made. A solution to his design problem was found at La Louvière, Belgium where one of three European hydraulic locks was operating. It was on this system that Rogers based his plan of the Peterborough Lift Lock.

By early 1897, Rogers had completed his design for the lock although work did not begin on the actual superstructure until 1899 (McMahon 1983: pers. com.). Delays caused by the great amount of water coming from the first in the ground and the high water level of the Otonabee River mixing with the clay, made it very difficult for the seventy-five labourers to proceed with their work. Concrete was the primary and revolutionary medium used to construct the lift lock although lumber was implemented as support for the concrete and in the construction of the derricks (Fig. 3). Immense piles of stone and sand were hauled to the upper west bank construction site by small cars which ran along spur lines...
Figure 2. General plan of the Trent Canal (Department of Transport Collection).
Figure 3. Early stages of construction ca. 1897-1902 (Trent-Severn Waterway Collection).
flanking the canal (Fig. 4). Horse power was also used to remove the recorded twenty thousand cubic yards of excavated earth from the lock pit (McMahon 1983, pers. com.). By 1904, the lift lock was completed and was officially open for transportation as "a magnificent Canadian engineering achievement" (Passfield 1979: 589). The canal's intended role, that of transporting western grain to Montréal for export, was to be superseded by rail transport. Eventually, the Peterborough Lift Lock and Trent Canal system were relegated to the position they now hold as a major tourist attraction operated for the benefit of recreational watercraft.
Figure 4. Dump site of siding etc. West side, looking north 1902 (Trent-Severn Waterway Collection).
Owing to the lack of strong evidence in the historical records which would suggest the presence of high concentrations of archaeological resources, coupled with the size of the area to be tested, a sampling strategy was selected for the investigations carried out at the Peterborough Lift Lock. Those areas found to contain positive results would be identified and monitored by an archaeologist should they be incorporated as part of the building site for the activity centre.

The merits of sampling have frequently been discussed by archaeologists in the past. Its capacity as a method of testing for various stages of archaeological research has often been questioned; concerns primarily revolve around the possibility of obtaining "an unrepresentative amount of heterogeneity in any given sample" (Binford 1964: 428). Obviously the previously mentioned factors of the Peterborough project would largely determine the type of sampling design to be applied. A method of systematic sampling (Ragir 1972: 183) consisting of an interval design aligned in one direction and unaligned in the other was selected for the purposes of this project. A grid system, its baseline running parallel to the canal, was established with points at five metre intervals. One disadvantage of a regular method of interval sampling is the possibility that "if data happens to be ordered ... clustered or periodic in the same way that the sample is selected, some of the material being measured may be over or under represented in the sample and the results may be skewed" (Lee 1981: 17). To avoid this discrepancy, the sampling units were positioned five metres apart at staggered intervals of one metre to
account for potential irregularities of archaeological resources (Fig. 5). A ten inch power auger mounted on a tractor was used as a quick and simple method of testing such an extensive area (Fig. 6). Approximately 170 1.25m deep cores were sunk.

Before the commencement of the coring program, however, it was felt that the varying geography of the area had to be surveyed to assess the manoeuvrability of the tractor within various "trouble spots". A marsh situated at the west end of the building zone and the lower slope leading down to it from the north (Figs. 1, 7) were potential problem areas and the cores originally mapped within its eastern portion had to be eliminated. The softness of the ground in the marsh area also prevented the completion of the grid but it was possible to include the perimeters of the marsh.

Although the terrain was firmer, the restroom area too was not without obstacles (Figs. 1, 8). A sewer-line running east-west through this area meant that considerable caution had to be exercised and some cores eliminated. Augering in the strip of land flanking the canal (Fig. 1) was also limited when it was learnt that the hydro cable extending from the lamp posts was situated a short distance below the ground level. Despite the elimination of these cores, a largely representative sample of the area was taken.

After the cores were sunk the backdirt brought up by the auger was sifted through by trowel and artifacts were collected. The profiles were cleaned, recorded and then filled in and the landscaping restored. Of the 170 cores which were recorded, two areas of the site emerged containing high concentrations of archaeological material, namely: the region located south of the restroom area, and in the vicinity of core 317 west of the road above the restrooms (Fig. 5). The remainder of the cores, especially those located in the marsh and roadside areas, contained few if any artifacts.
Figure 5: Site Plan showing 1983 coring program and areas of high artifact concentration (Drawing by B. Prins).
Figure 6. Coring in progress. Northern slope above marsh area, facing west (Photo by C. Phillips; 40H1A-5M).

Figure 7. Cores in lower marsh area, facing west (Photo by S. Plouzos; 40H1A-10M).
Figure 8. Restroom area cores. Profiling in progress, facing northeast (Photo by C. Phillips; 40H1A-8M).
The 1983 Survey - Stratigraphy

The depths, diameters (most cores averaged between 35 cm to 40 cm) and profiles of each core were recorded. The stratigraphy sequence of the cores located in the restroom area may be summarized as: the sod layer; a topsoil layer of sandy silt; and two to three layers of fill comprised of sand, gravel, and clay often with mortar, brick or charcoal inclusions (Fig. 9). A cross-section of the stratigraphy of this entire area was produced by joining the profiles together at their corresponding layers thus providing information on the original grade of the land (Figs. 10, 11). When used with the existing photographic records this could be useful for landscape restoration if it is planned in the future.

The cores flanking the roadside consisted of sand and gravel fill for the roadbed. In the marsh area, there was no evidence of previous disturbance in the core back dirt; each core consisted of rich black humus overlying a sterile gray clay layer. The cores themselves filled immediately with water, making it impossible to record the stratigraphy; only the depths and diameters of each could be noted.

Artifacts Recovered in 1983

The small assemblage of artifacts recovered during sampling are arranged in this report according to their intended use at the time of manufacture. This functional approach was selected to provide an insight into the activities
Figure 9. Profiles of cores # 346 and # 285
(Drawing by J. Maltby).
Figure 11. Core profiles running east-west indicating original grade (drawing by J. Malby).

Legend:
- Sandy silt
- Sand
- Sandy silty silt
- Clay
- Sandy clay
- Limestone
- Cherty clay
- Gravel
- Wood
- Brick

NB: The distance between each core is 3 metres.
at the site and more importantly, to determine if remnants of the original construction camp still remained. Those artifacts relating to activities within the home, including ceramic and glass sherds as well as faunal remains, comprise the domestic group. Nails and samples of brick, mortar and wood constitute a group of structurally related artifacts. The remaining artifacts fall into either the hardware or personal groups.

Artifacts were noted chiefly in the vicinity of the restrooms. Most of the remaining cores were sterile. Table 1 details the classification of artifacts by functional group for each core dug; for convenience the cores are arranged by geographical zone across the site.

Domestic Group
The majority of ceramic and glass sherds found during sampling conformed to the late nineteenth/early 20th century context of the site. Of the ceramic artifacts, vitrified white earthenware (ironstone) comprised the largest ware type. Only two sherds of this type were decorated, one with a stamped spongeware design and another with an under-glaze printed design, both of which were popular in the mid-19th century (Collard 1967: 145, 114). Two white earthenware sherds, decorated with a lithographic design also indicated a similar temporal period. Bone china sherds, one of which was decorated with a polychrome underglaze transfer print (post-1830) (Collard n.d: D9) were also datable to the late 19th century. The post-1890 (Godden 1964: 427) date of a makers' mark (J. & G. Meakin) found on the base of an ironstone vessel further confirmed the late 19th/early 20th century context of the site.
Table 1. Artifact Distribution Chart.
Coarser wares were also represented in the assemblage. Five red earthenware sherds and one stoneware sherd with a Bristol glaze (1860 - 1890)(Noel-Hume 1976: 79) could also be included as possible components of the construction camp period. A minimum vessel count of both fine and coarse wares indicated the predominance of hollow-ware vessels in the assemblage (Table 2).

Most of the 103 glass fragments found during the coring program were from machine-made glass bottles, thus placing them in a post-1880 context (Munsey 1970: 33). The colour of the glass, predominantly green or colourless, was also indicative of a late 19th century context. Until the mid-1880s it was commonly believed that dark glass was best and it was not until the turn of the century that shades other than the conventional greens and aquas were used (Munsey 1970: 37). Smaller quantities of medicinal (five), dark olive green (four), amber (three) and manganese tint glass (one) sherds were also recovered. The remainder of the glass consisted of flat, lamp and table glass fragments (Table 1). Glass and ceramic artifacts were scattered throughout the restroom area cores and branched out to the strip of land flanking the canal.

Faunal remains were also present in the artifact assemblage. Although shell fragments constituted the majority of samples from this group, butchered and burnt bones were also evident.

Structural Remains
A considerable amount of wood, both finished and unfinished, was found in approximately one quarter of the cores situated in the restroom area as indicated by the artifact
Table 2: Minimum Vessel Counts of Ceramic Wares

Red Earthenware

<table>
<thead>
<tr>
<th>Vessel Code</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>40H1A268</td>
<td>1 handle</td>
<td></td>
</tr>
<tr>
<td>40H1A267</td>
<td>1 rim same vessel</td>
<td></td>
</tr>
</tbody>
</table>

White Earthenware

<table>
<thead>
<tr>
<th>Vessel Code</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>40H1A205</td>
<td>1 blue hand painted sherd</td>
<td></td>
</tr>
<tr>
<td>40H1A375</td>
<td>1 plain rim</td>
<td></td>
</tr>
<tr>
<td>40H1A306</td>
<td>1 brown hand painted sherd and 1 base polychrome printed</td>
<td></td>
</tr>
<tr>
<td>40H1A248</td>
<td>1 plain base</td>
<td></td>
</tr>
</tbody>
</table>

Vitrified White Earthenware

<table>
<thead>
<tr>
<th>Vessel Code</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>40H1A248</td>
<td>1 body</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 handle/knob</td>
<td></td>
</tr>
<tr>
<td>40H1A227</td>
<td>1 base</td>
<td></td>
</tr>
<tr>
<td>40H1A267</td>
<td>1 rim</td>
<td></td>
</tr>
<tr>
<td>40H1A328</td>
<td>1 rim/base/body</td>
<td></td>
</tr>
<tr>
<td>40H1A243</td>
<td>1 base/footring</td>
<td></td>
</tr>
<tr>
<td>40H1A287</td>
<td>1 rim</td>
<td></td>
</tr>
<tr>
<td>40H1A207</td>
<td>1 rim - stamped sponge design</td>
<td></td>
</tr>
</tbody>
</table>

Bone China

<table>
<thead>
<tr>
<th>Vessel Code</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>40H1A346</td>
<td>1 rim - plain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 rim/body - printed</td>
<td></td>
</tr>
<tr>
<td>40H1A307</td>
<td>1 footring - plain</td>
<td></td>
</tr>
</tbody>
</table>

Stoneware

<table>
<thead>
<tr>
<th>Vessel Code</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>40H1A346</td>
<td>1 base - Bristol Glaze</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL VESSEL COUNT: 18
distribution chart (Table 1). Cores containing wood samples were concentrated in the southeast corner of this area and although unsupported by historic photographic evidence (Fig. 5), they might have represented building remains, building debris scattered throughout the construction site, or debris in the fill used for the creation of the land tiers.

Another area which contained possible structural evidence was located near core 317. Although few artifacts were recovered from this area, rock concentrations and pits observed on the surface were found and were considered to represent structural remains.

Asphalt, mortar, charcoal and brick samples were all collected from the core debris and might have indicated fill or possibly structural remains of some form or another. These samples were collected throughout the restroom area and beyond the road to the cores adjacent to the canal bank.

The majority of nails found in the core debris were wire (post-dating 1850) (Noel-Hume 1970: 254) although a few machine-cut examples were also evident (post-dating 1790) (Noel-Hume 1970: 253). In both cases they were of the common variety and were scattered throughout the restroom area.

Hardware Group
The majority of artifacts belonging to this group were composed of ferrous or composite metals. Those with identifiable attributes indicated late 19th/early 20th century dates. Ferrous and white metal wire, mechanical parts such as a hub nut and a screw as well as one ferrous container and an industrial paint can lid with an enamel coating constituted the assemblage.
Personal Group
The only two artifacts found within this category were a fragment of an undecorated clay pipe bowl and a plastic comb fragment both located in core 267.
Results of the 1983 Survey

Although artifacts were scattered throughout the site, there were various "hot spots" which contained higher concentrations of artifacts, notably cores 387, 268, 345, 182, 246, 346 and 267. With the exclusion of core 182, all of these cores were situated in the restroom area (Fig. 5). The presence of both structural and artifactual evidence within many of these cores were believed to represent secondary deposits such as debris accumulated during the construction period or placed in fill over the original grade, rather than structural remains. That they might indicate potential activity areas remained purely speculative until further investigation was undertaken.

The majority of artifacts recovered in 1983 conformed to the late 19th/early 20th century context of the site. The lack of significant archaeological evidence however, confirmed the historical photographic record and appeared to negate the presence of any significant structures related to this area. Two localities (the restroom area and core 317) seemed to contain significant resources within the proposed construction zone. It was therefore recommended to the planning team that if either of these two areas was selected for the site of the proposed activity centre, further archaeological investigations would be required. The results of the testing were incorporated into final designs for the site and further mitigation was carried out in 1984.
The 1984 Archaeological Testing

Based upon the 1983 results, further archaeological testing was required in the spring and fall of 1984. The chosen site of the new activity centre posed a considerable threat to two areas identified during the original coring program, as "hotspots". Landscaping in the field area lying north of the parking lot and the installation of service lines in the restroom area warranted concern over the preservation of cultural resources believed to exist in those regions of the site.

The Field Area (Sub-operation 40H2A)

The first area to be tested was located in the vicinity of core 317 (Fig. 5). During the coring program, artifacts and a possible structure (a stone feature) were recorded and were thought to be associated with an earlier or contemporaneous farmstead. In June 1984, plans to direct the new access road to the parking lot area threatened to disturb the feature. Heavy vegetation in the previous year had prevented close examination of this mound. In 1984, however, with the scrub cover and trees removed, it appeared to more strongly resemble a rock pile than the remains of a structure.

To ascertain its true nature, a trench measuring 8 m by 1 m was extended in a north-south direction through this feature with core 317 situated at its south end (Fig. 12). Underlying a 10 cm layer of sod and humus, the rocks were found to be in no particular pattern and lacked mortar which might have indicated structural remains. The trench was
Figure 12. Site plan showing 1984 excavations (Drawing by Moore - George Associates for Parks Canada).
excavated in three places below the rock surface to ensure that possible structural information contained in the profile would not be missed. The excavated areas, in the centre and at either end of the unit, yielded a yellowish brown sand and underneath, a sandy clay subsoil of the same colour. The artifacts recovered from sub-operation 40H2A were all of 20th century origin; ferrous wire, styrofoam, clear bottle (8) and flat (1) glass, and a crown closure (post-1891) (Munsey 1970:105) were found in the sod and humus layers while white earthenware (3) sherds were retrieved from the yellowish brown sand lying beneath. The rocks themselves were round fieldstones measuring approximately 20 cm in diameter.

The Restroom Area

The region lying south of the existing restrooms was also of concern. Several areas with high artifact concentrations had been identified in the 1983 survey (Fig. 5); it was recommended then that any construction-related activity occurring in this area would be monitored by Archaeological Research.

In the fall of 1984, a 25 m long trench for a water line (sub-operation 40H2B) and another trench of similar dimensions for a sewer branch (sub-operation 40H2D) were dug with a backhoe by construction workers. Both trenches ran east-west to the activity centre (Fig. 12). The north profile sub-operation of 40H2B was recorded; the excavation of sub-operation 40H2D was monitored although the similarity of its stratigraphy to that of sub-operation 40H2B did not warrant further recording. Artifacts were collected from both trenches as well as the area surrounding the restrooms (sub-operation 40H2C).
A third trench was to be excavated beneath the existing road yet because of its previous disturbance by storm sewer installation, further monitoring was felt to be unnecessary. As well, a trench for an electrical line was to be dug through the parking lot area. The asphalt had already been removed by the time the 1984 fieldwork at this site began, revealing a deep layer of sand fill lying below. It seemed unlikely that the 1.5 m depth of such a trench would penetrate below this fill to harm any remains of the construction camp which might exist below.

Sub-operation 40H2B

The dimensions of this trench were approximately 1.2 m deep, 25 m long and 1 m wide. The profile drawing of its north wall however, began 3 m east of the activity centre and extended 18 m in that direction to a cement drain; beyond that, the profile was quite disturbed (Fig. 13).

Much of the sod and humus had already been scraped away by bulldozers leaving a sand base covering the site. This matrix extended down the entire length of the trench and was approximately 60 cm deep. Most artifacts associated with 40H2B came from this sand layer. They included a cut nail, mammal bones (3), dark olive green (1), flat (1), turquoise flask (1), lamp chimney (1) and medicinal (1) glass fragments. The latter had a prescription lip which is datable from 1876 to 1919 (Jones et al 1979:n.p.). Bone china (1), refined white (2), coarse (1), dyed (1) and vitrified white (2) earthenware sherds were also found in the assemblage. The latter two wares contained diagnostic elements; the fragments of vitrified white earthenware
Figure 13. North profile of 40H2B (Drawing by J. Maltby).
possessed a post-1859 "Ceres" moulded relief pattern (Wetherbee 1981:72). The sherd of dyed white earthenware resembled "Ivory ware" which was manufactured in the late 19th/early 20th century (Grainger 1982:13). An underglaze interior brown transfer print and handpainted design decorated this particular fragment. The late 19th/early 20th century context and the sandy nature of this layer, suggest that it may be landscaping fill brought in to create the terrace where the restrooms now stand.

Below the sand and at approximately 10 m east, a layer of light grey clay with gravel occurred. Although diagnostic artifacts were absent, several fragments of finished wood including a 26 cm thick plank with wire spikes, were scattered throughout the soil. It is possible that these structural remains could be construction debris associated with the building of the lift lock.

Below this and the sand layers, a 30 cm band of dark grey clay and humus was found. Modern artifacts such as amber beer bottle (50), flat (2) and lamp chimney (1) glass sherds as well as ferrous wire (1) comprised the assemblage from this matrix. At approximately 13 m east, this clay and humus soil merged with a buried black humus layer. No artifacts however, were found in either this or the sterile sand and clay subsoils lying below.

By linking the stratigraphy of this trench with the profile drawings collected during the core sampling, a substantive understanding of the landscaping of this area may be gleaned (Fig. 14). A cross-section of these profiles reveals a layer of sandy fill approximately 50 cm deep underlying the sod and humus. The former matrix is likely fill brought in after construction of the lift lock when landscaping for the road leading to Huntley Street was completed (ca. 1960) (Doug Stewart 1983:pers. com.). A similar sandy soil was found in several core profiles as well
Figure 14. A stratigraphic comparison of 40H2B and core profiles showing original grade (Drawing by J. Maltby).
as the roadbed itself which seems to suggest a temporally related activity. The predominance of late 19th/early 20th century artifacts may indicate that the fill was redeposited from another area of the site. The clay and humus layer underlying this fill was found in several of the profiles and possibly represents a buried sod horizon dating to the original 1904 grade. The remaining subsoils are likely associated with landscaping activities carried out ca. 1904 upon completion of the lock superstructure.

Sub-operation 40H2D

The artifacts found in the trench for the sanitary sewer line were also collected from the sand layer. Sherds of vitrified white (7), refined white (2) and coarse (3) earthenwares echoed similar wares found in the other tested areas. A makers' mark, T. Furnival and Sons, which dates from 1871-90 (Wetherbee 1981:28) was found on the base of a vitrified white earthenware saucer. Soda (2), lamp (1), flat (1) and turquoise flask (1) glass fragments were also included in the assemblage, as were finished wood fragments.

Sub-operation 40H2C

The only other area which received archaeological attention lay between the new activity centre, the restrooms and the canal. Although this entire region had been bulldozed, surface material which included sherds of vitrified white (3) and refined white (1) earthenwares as well as the base of a drinking glass were collected.
Conclusions

Photographic evidence dating from the construction period suggests that no significant structures were present within the proposed activity centre building zone. The construction camp itself appears to have been situated near the present day upper parking lot. The area of the proposed building zone is shown to have consisted of open fields and farm land (Fig. 4). Strewn lumber, perhaps the source of the finished wood samples which were recovered from the cores, is illustrated in the restroom area (Fig. 3).

Information regarding the original grade of the land may also be gathered from the historic photographs. The roadway used for the transportation of goods to Huntley Street appears to have formed the foundation of the embankment sloping up to the restroom area (Fig. 15). The 1899 ground plan of the embankment also indicates the presence of this slope (Fig. 16). The gentle incline near the restroom area which is present in the photograph appears to have been flattened out, presumably in the 1960s when the road was constructed.

The absence of substantial archaeological evidence collected during the 1984 monitoring program supports the belief that although these areas may contain debris from the construction of the lift lock, they do not represent structural remains relating to that activity. The extent of fill covering most of the site ensures that any cultural resources buried beneath, specifically the construction camp, would be preserved even though construction for the new centre has gone forward. As a result, it was recommended that future mitigation for this project would not be necessary unless the existing plans were altered, thereby causing concern for those resources.