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This report is one in a series that provides a regional summary of observed and projected 

climate change trends and impacts facing all of Canada’s national parks, national marine 

conservation areas and certain national historic sites. This is an internal document to Parks 

Canada and is intended to encourage and inform broader conversations and support place–

based actions on climate change.  

 

The “Let’s Talk about Climate Change” series regions are defined by biogeoclimatic and 

operational similarities, and include: 1) Atlantic Region; 2) Quebec Region; 3) Great Lakes 

Region; 4) Prairie and Boreal Plains Region; 5) Mountain Region; 6) Pacific Region; 7) 

Northwest Region; and, 8) Arctic and Hudson Plains Region. 

 

 

 

 

This report and others in the series are available at the Parks Canada Climate Change SharePoint 

Website: http://collaboration/sites/PD010/SitePages/Home.aspx 
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1. Introduction 
 

The fifth and most recent report from the Intergovernmental Panel on Climate Change (IPCC, 

2014) establishes with certainty that the Earth’s climate system is warming, “and since the 

1950’s, many of the observed changes are unprecedented over decades to millennia”. Human 

activity has increased atmospheric concentrations of greenhouse gas (GHG) to levels not 

observed in at least the last 800,000 years. Worldwide, a rapidly changing climate is having 

profound impact on our social-ecological systems, amplifying existing risks and creating new 

ones.  

 

Canada’s rate of warming is about double the global rate (even greater in the north) and the last 

three decades have been the warmest 30-year period in at least 1,400 years. Some of the 

observed changes include shifts in species distribution and abundance, glacier loss, thawing 

permafrost, decreasing sea ice, earlier ice break-ups, increasing wildfires, sea level rise along 

some coasts, changes to phenology, and an increase in extreme weather events such as heat 

waves, droughts, heavy rainfall and more (e.g., Lemmen et al., 2016; Warren and Lemmen, 

2014). The risks and impacts are felt across Parks Canada, from the ecosystems and cultural 

resources we protect, to the facilities and infrastructure we build and maintain, to the visitor 

experiences we offer - and most concerning, these impacts are projected to increase for decades 

to come. It is an uncertain and complex context, one which will test the adaptive capacity and 

effectiveness of policy, planning, and management frameworks. 

 

To advance place-based climate response efforts, this document is one in a series of regional 

reports that provides accessible summary information about climate change in Canada’s national 

parks, national marine conservation areas (NMCAs) and certain national historic sites. For some 

sites this will support preliminary conversations on climate change and for others the content will 

be eclipsed by a need for more detailed vulnerability assessments, adaptation strategies and 

decision support tools. Regardless, the intent is to encourage and equip individuals and sites to 

talk about climate change, both internally and externally, and consider the challenges in their 

own context.  

 

1.1. “Natural Solution” Concept 
 

As a lead conservation and protected area agency, and the largest federal land owner and third 

largest federal asset manager in the country, Parks Canada’s response to climate change is a 

matter of importance. Part of the response will involve recognizing and positioning protected 

areas as a “natural solution” to climate change in regional, national and international plans and 

programs (e.g., Dudley et al., 2010; Lopoukhine et al., 2012; NAWPA, 2012). 

   

As a “natural solution”, well-designed and effectively managed protected areas: 

 Mitigate climate change through the sequestration and storage of carbon in forests, 

coastal wetlands (“blue carbon”) and other natural ecosystems. 

 Protect biodiversity by providing a safe haven for species. 

 Enhance connectivity and species movements within and across protected area networks. 
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 Provide essential ecosystem goods and services, such as clean water, erosion control, 

flood/storm water protection, genetic diversity, cultural opportunities, etc… 

 Serve as a benchmark for climate change related research and monitoring. 

 Provide a context for social learning, good governance, and adaptive management.  

 Help people and communities cope by supporting sustainable and resilient economies in 

and around protected areas and promoting social well-being (e.g., healthy parks – healthy 

people). 

 Demonstrate environmental stewardship through “green” design and conservation 

practices. 

 Create and facilitate meaningful experiences that help to inspire, inform, and guide 

actions in response to climate change.      

 

 

 
Figure 1. National Parks (NP), National Park Reserves (NPR) and National Historic Sites (NHS) included in this 

regional assessment. 

Nahanni NPR

Nááts’ihch’oh NPR
Sahoyúé-§ehdacho NHS

Vuntut NP

Ivvavik NP

Kluane NPR

Chilkoot
Trail NHS

Dawson Historical
Complex NHS
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2. Observed and Projected Climate Trends 
 

This section provides site specific summaries of historic observed temperature and precipitation 

trends as well as future climate projections. These are only a subset of the climate variables 

available for analysis and presentation (see Appendix 1).  

 

2.1 Methods 
 

Historic observed mean monthly temperature and total precipitation data was accessed from the 

Adjusted and Homogenized Canadian Climate Data website (http://www.ec.gc.ca/dccha-ahccd) 

for the climatological stations within or closest to each protected area. Temperature and 

precipitation stations were not always in the same location and preference was given to selecting 

stations with the longest and most current data for a protected area. Of note, finding a 

representative station was challenged by the fact that there are fewer stations with limited 

distribution for this region. All available years were plotted and the trend was determined using a 

generalized linear model (R Core Team, 2014) including 95% confidence intervals. For the 

analysis, winter = December, January and February; spring = March, April and May; summer = 

June, July and August; and, autumn = September, October and November. 

  

A table with future climate change projections was determined for the centre of each protected 

area. Season by season descriptions were provided to complement the earlier park-based 

assessments by Scott and Suffling (2000) and to help inform seasonal operations and activities. 

The climate projections were determined following Price et al. (2011) and used the average of 

four General Circulation Models (GCMs) and the lowest and highest Representative 

Concentration Pathway (RCP) GHG scenarios (Vuuren et al., 2011). The RCP 2.6 (lowest) 

scenario assumes that we take action and GHG emissions peak in 2010-2020 and decline 

thereafter. The RCP 8.5 (highest) scenario assumes we take no action and emissions continue to 

rise throughout the 21st century. Figures 2 and 3 also include a projection based on the RCP 4.5 

scenario, where emissions peak around 2040 and then decline.  

 

Vertical allowance for Ivvavik NP was acquired from the Canadian Extreme Water Level 

Adaptation Tool (CAN-EWLAT, http://www.bio.gc.ca/science/data-donnees/index-en.php). The 

vertical allowance is a “recommended change in the elevation of coastal infrastructure required 

to maintain the current level of flooding risk in a future scenario of sea level rise”. This estimate 

is based on a future projection of regional sea level rise using the RCP 4.5 and RCP 8.5 scenarios 

and historical water level records, including both tides and storm surge. The historical records do 

not incorporate predicted changes in storm tides. 

 

2.2 Regional Climate Change Summaries 
 

2.2.1 Physical Effects 
 The annual air temperature for the region has increased by 1.0 – 2.5˚C since the 1950’s, 

nearly twice the rate of southern Canada and the globe (DeBeer et al., 2016; Streicker, 

2016). The warming has been slightly greater for the nighttime versus daytime period 

(Vincent et al., 2012). Seasonally, the greatest warming has occurred in the winter (~4˚C) 

http://www.ec.gc.ca/dccha-ahccd
http://www.bio.gc.ca/science/data-donnees/index-en.php
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with spring arriving as much as 5 to 20 days earlier (Vincent et al., 2015). This warming 

trend is projected to continue and model results indicate a further increase of 2-8˚C by 

2100, depending on the location and RCP scenario applied (see figure 2). 

 Precipitation patterns have been variable, with a slight increase in total annual 

precipitation being observed in most areas (e.g., increased 6% in past 50 years reported 

by  Streicker, 2016). This trend is expected to continue, with the greatest increase in 

winter and spring precipitation amounts (e.g., 8-23% by 2100) (Lemmen et al., 2016). 

 Although there are local differences in the magnitude of sea level change due to factors 

such as vertical land motion (e.g., glacial isostatic rebound) and ocean currents, 

regionally (i.e., Tuktoyaktuk Hydrographic Station) sea levels are rising at ~1.28 mm/yr 

and projections indicate another 30-87 cm rise by 2100, which is at or close to the global 

mean (http://www.psmsl.org/data; James et al., 2014).  

 Increasingly, the permafrost is thawing or degrading (e.g., Lyon and Destouni, 2010; 

Smith, 2010; Turner, 2013; Warren and Lemmen, 2014). In some areas, particularly 

where it is discontinuous, this is leading to decreased substrate stability, surface 

subsidence, waterlogging, increase in water flows, thermokarst development and collapse 

of forested peat plateaus, as well as an associated release of GHG (e.g., Baltzer et al., 

2014; de Grandpre et al., 2012; Segal et al., 2016; Walvoord and Kurylyk, 2016; Warren 

et al., 2013). 

 Zhang et al. (2013)  modelled climate change impacts to permafrost in Ivvavik NP and 

reported that while progressive degradation and deepening of the active layer will 

continue, permafrost will persist in most of the park during the 21st century. 

 Snow cover duration and extent has declined in recent decades (e.g., Derksen and Brown, 

2012; Derksen et al., 2012).  

 Since the mid-20th century the duration of ice cover on lakes and rivers has generally 

reduced and spring breakup is occurring one to several weeks earlier (Beltaos and 

Prowse, 2009; Prowse, 2012). This trend is expected to continue with breakup dates 

advancing by 1 to 3½ weeks and freeze-up dates being delayed by up to 2 weeks (Dibike 

et al., 2012; Warren and Lemmen, 2014). 

 Sea ice is melting and the Arctic Ocean is projected to be ice-free in summer in the first 

half of this century (IPCC, 2014; Streicker, 2016). 

 Glaciers across the region are retreating and showing a negative net mass balance 

(Demuth and Ednie, 2016; Flowers et al., 2014; Moore et al., 2009). It is estimated that 

by 2100, “the volume of glacier ice in western Canada will shrink by 70 +/- 10% relative 

to 2005” (Clarke et al., 2015). The Bologna Glacier (Nahanni NPR) area has declined by 

14% since 1984 and melt water discharge into the South Nahanni River has increased 

(Anderson, 2017). 

 Trends in river flow vary regionally and over time, however there appears to be a general 

increase in winter flows, while summer flows remain inconsistent (DeBeer et al., 2016). 

Long-term trend indicate an increased discharge at the mouth of the Mackenzie River 

from variable and changing climate, including permafrost degradation (Dery et al., 2016; 

Rood et al., 2017).     

 Areas currently prone to high wind events will continue to be vulnerable. There is some 

suggestion that extreme events will increase slightly in the region (Cheng et al., 2014).  
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Figure 2. Temperature projections represent a composite (average) of four spatially interpolated downscaled Global 

Circulation Models: CanESM2, CESM1CAM5, HADGEM2ES and MIROCESM, using three greenhouse gas 

scenarios (RCPs) for three future time periods. Climate data provided by Natural Resources Canada, Canadian 

Forest Service, Sault Ste. Marie (http://cfs.nrcan.gc.ca/projects/3). 
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 Total Annual Precipitation 
Change from 1980-2010 Baseline 
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Figure 3.  Precipitation projections represent a composite (average) of four spatially interpolated downscaled Global 

Circulation Models: CanESM2, CESM1CAM5, HADGEM2ES and MIROCESM, using three greenhouse gas 

scenarios (RCPs) for three future time periods. Climate data provided by Natural Resources Canada, Canadian 

Forest Service, Sault Ste. Marie (http://cfs.nrcan.gc.ca/projects/3).  
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Chilkoot Trail National Historic Site 
 

A. Mean Temperature 

 
Seasonal mean temperature at Atlin Climatological Station (1200560) from 1905 to 2015. A significant trend 

(P<0.05) observed for winter (0.032°C/yr), spring (0.013°C/yr) and summer (0.012°C/yr). No significant trend 

(P<0.05) observed for autumn. 

B. Total Precipitation 

 
Seasonal total precipitation at Atlin Climatological Station (1200560) from 1906 to 2015. A significant trend 

(P<0.05) observed for winter (0.33mm/yr), spring (0.18mm/yr), summer (0.39mm/yr) and autumn (0.2mm/yr).  

C. Climate Change Projection for Centre of Historic Site Relative to 1981-2010 Baseline Mean (Appendix 1) 

 

Increase / decrease  in: 2011-2040 2041-2070 2071-2100 

Max Winter Temperature (°C) 7.1 to 7.7 8.1 to 10.1 8.7 to 12.6 

Max Spring Temperature (°C) 1.6 to 1.9 2.4 to 3.7 2.5 to 6.1 

Max Summer Temperature (°C) 2.9 to 3.0 3.8 to 5.5 3.7 to 8.3 

Max Autumn Temperature (°C) 7.2 to 7.4 7.9 to 9.4 7.8 to 11.8 

Min Winter Temperature (°C) 0.3 to 1.0 1.6 to 4.1 2.4 to 7.6 

Min Spring Temperature (°C) 1.7 to 2.0 2.6 to 4.3 2.8 to 7.2 

Min Summer Temperature (°C) 1.1 to 1.1 1.9 to 3.4 1.9 to 5.9 

Min Autumn Temperature (°C) -8.0 to -8.3 -5.7 to -7.5 -3.2 to -7.6 

Precipitation in Winter -52.0 to -54% -47% to -53% -50% to -44% 

Precipitation in Spring -47.4 to -48% -15% to -48% -47% to -41% 

Precipitation in Summer -24.0 to -24% -20% to -21% -19% to -19% 

Precipitation in Autumn -38.4 to -45% -33% to -36% -35% to -26% 

Advance in start of growing season (# days) 12.8 to 20.2 8.2 to 9.8 13.8 to 34.6 
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Dawson Historical Complex National Historic Site 

 

A. Mean Temperature 

 
Seasonal mean temperature at Dawson Climatological Station (2100LRP) from 1901 to 2015. A significant trend 

(P<0.05) observed for winter (0.035°C/yr), spring (0.027°C/yr) and summer (0.013°C/yr). No significant trend 

(P<0.05) observed for autumn. 

B. Total Precipitation 

 
Seasonal total precipitation at Dawson Climatological Station (2100402) from 1901 to 2015. No significant trend 

(P<0.05) observed for winter, spring, summer or autumn. 

C. Climate Change Projection for Centre of Historic Site Relative to 1981-2010 Baseline Mean (Appendix 1) 

 

Increase / decrease  in: 2011-2040 2041-2070 2071-2100 

Max Winter Temperature (°C) 8.8 to 9.4 10.2 to 12.7 10.6 to 16.2 

Max Spring Temperature (°C) 0.9 to 1.4 2.1 to 3.8 2.2 to 16.5 

Max Summer Temperature (°C) 1.9 to 1.9 2.6 to 4.1 2.5 to 6.7 

Max Autumn Temperature (°C) 12.2 to 12.0 12.7 to 14.2 12.6 to 16.7 

Min Winter Temperature (°C) 0.5 to 1.1 2.1 to 4.9 2.5 to 9.2 

Min Spring Temperature (°C) 1.8 to 2.3 2.9 to 5.0 3.2 to 8.4 

Min Summer Temperature (°C) 2.3 to 2.3 3.0 to 4.5 3.0 to 7.1 

Min Autumn Temperature (°C) -18.6 to -18.8 -16.2 to -18.0 -13.5 to -18.1 

Precipitation in Winter 26% to 29% 31% to 44% 39% to 66% 

Precipitation in Spring 20% to 21% 14% to 33% 23% to 59% 

Precipitation in Summer 1% to 6% 10% to 17% 12% to 26% 

Precipitation in Autumn 25% to 50% 29% to 47% 37% to 72% 

Advance in start of growing season (# days) 10.8 to 16.4 7.8 to 8.6 11.8 to 26.8 
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Ivvavik National Park 
 
A. Mean Temperature 

 
Seasonal mean temperature at Komakuk Beach Climatological Station (2100682) from 1958 to 2015. A significant 

trend (P<0.05) observed for winter (0.034°C/yr), spring (0.042°C/yr), summer (0.038°C/yr) and autumn 

(0.036°C/yr).  

B. Total Precipitation 

 
Seasonal total precipitation at Komakuk Beach Climatological Station (2100685) from 1959 to 1993. A significant 

trend (P<0.05) observed for winter (0.44mm/yr) and spring (0.5mm/yr). No significant trend (P<0.05) observed for 

summer or autumn. 

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 

 

Geo-centroid: 139° 51’ 13.66” W, 69° 06’ 09.78” N; elevation 672m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) 1.6 to 2.7 3.8 to 7.8 3.9 to 14.0 

Mean Spring Temperature (°C) -0.1 to -0.3 0.8 to 3.3 1.2 to 7.8 

Mean Summer Temperature (°C) -0.1 to 0.0 0.6 to 2.2 0.7 to 5.0 

Mean Autumn Temperature (°C) 1.9 to 1.9 3.1 to 4.8 3.1 to 8.0 

Precipitation in Winter -25% to -27% -12% to -24% -19% to 2% 

Precipitation in Spring -23% to -23% -15% to -22% -2% to -18% 

Precipitation in Summer 8% to 8% 16% to 25% 17% to 35% 

Precipitation in Autumn 8% to 9% 14% to 30% 15% to 46% 

Number of days of growing season 2.0 to 3.0 8.0 to 19.0 9.0 to 39.0 

Growing degree-days during growing season  -3% to -7% 21% to 87% 23% to 233% 

Advance in start of growing season (days) 1.0 to 1.0 1.0 to 6.0 1.0 to 17.0 

Climate Moisture Index (sum May-Sept) 6.3 to 6.3 5.2 to 6.1 2.3 to 6.1 

 

D.  Sea Level Vertical Allowance, Tuktoyaktuk, NT 
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Kluane National Park Reserve 
 

A. Mean Temperature 

 
Seasonal mean temperature at Haines Junction Climatological Station (2100630) from 1944 to 2015. A significant 

trend (P<0.05) observed for winter (0.067°C/yr), spring (0.032°C/yr) and summer (0.019°C/yr). No significant trend 

(P<0.05) observed for autumn. 

B. Total Precipitation 

 
Seasonal total precipitation at Haines Junction Climatological Station (2100631) from 1945 to 2008. A significant 

trend (P<0.05) observed for winter (0.9mm/yr). No significant trend (P<0.05) observed for spring, summer or 

autumn. 

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 
 

Geo-centroid: 139° 12’ 08.26” W, 60° 37’ 53.06” N; elevation 2607m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) -0.8 to -1.4 -0.2 to 2.0 0.5 to 4.9 

Mean Spring Temperature (°C) -0.4 to 0.0 0.5 to 2.0 0.8 to 4.4 

Mean Summer Temperature (°C) 1.1 to 1.0 1.9 to 3.3 1.8 to 5.9 

Mean Autumn Temperature (°C) 0.7 to 0.9 1.5 to 3.1 1.4 to 5.5 

Precipitation in Winter -22% to -24% -14% to -21% -6% to -18% 

Precipitation in Spring -14% to -14% -12% to -14% -3% to -12% 

Precipitation in Summer -16% to -18% -13% to -14% -8% to -11% 

Precipitation in Autumn -15% to -16% -9% to -13% -1% to -12% 

Climate Moisture Index (sum May-Sept)  43.5 to 44.1 41.1 to 43.4 40.7 to 45.1 
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Nááts’ihch’oh National Park Reserve 
 

A. Mean Temperature 

 

Seasonal mean temperature at Fort Simpson Climatological Station (2202103) from 1895 to 2015. A significant 

trend (P<0.05) observed for winter (0.034°C/yr), spring (0.04°C/yr), summer (0.016°C/yr) and autumn (0.012°C/yr).  

B. Total Precipitation 

 
Seasonal total precipitation at Fort Simpson Climatological Station (2202101) from 1898 to 2014. A significant 

trend (P<0.05) observed for winter (0.53mm/yr), spring (0.24mm/yr), summer (0.74mm/yr) and autumn 

(0.48mm/yr).  

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 

 

Geo-centroid: 128° 32’ 44.76” W, 62° 40’ 18.39” N; elevation 1471m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) -0.5 to 0.0 0.7 to 3.3 1.4 to 6.8 

Mean Spring Temperature (°C) -0.2 to 0.1 0.6 to 2.3 0.9 to 5.4 

Mean Summer Temperature (°C) 1.6 to 1.6 2.3 to 3.9 2.3 to 6.7 

Mean Autumn Temperature (°C) 1.7 to 2.0 2.5 to 4.2 2.4 to 7.0 

Precipitation in Winter -24% to -25% -15% to -24% -5% to -20% 

Precipitation in Spring -18% to -20% -10% to -18% -17% to 0% 

Precipitation in Summer 5% to 6% 13% to 14% 11% to 19% 

Precipitation in Autumn -2% to -3% 3% to 10% 6% to 27% 

Number of days of growing season 12.0 to 14.0 19.0 to 34.0 23.0 to 62.0 

Growing degree-days during growing season  51% to 52% 77% to 146% 79% to 272% 

Advance in start of growing season (days) 6.0 to 6.0 10.0 to 17.0 12.0 to 26.0 

Climate Moisture Index (sum May-Sept) 7.3 to 7.8 4.7 to 7.8 -0.9 to 7.5 
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Nahanni National Park Reserve 
 

A. Mean Temperature 

 

Seasonal mean temperature at Fort Simpson Climatological Station (2202103) from 1895 to 2015. A significant 

trend (P<0.05) observed for winter (0.034°C/yr), spring (0.04°C/yr), summer (0.016°C/yr) and autumn (0.012°C/yr).  

B. Total Precipitation 

 
Seasonal total precipitation at Fort Simpson Climatological Station (2202101) from 1898 to 2014. A significant 

trend (P<0.05) observed for winter (0.53mm/yr), spring (0.24mm/yr), summer (0.74mm/yr) and autumn 

(0.48mm/yr).  

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 

 

Geo-centroid: 125° 54' 14"W, 61° 36' 37"N; elevation 914 m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) 2.0 to 2.5 3.1 to 5.7 3.8 to 9.3 

Mean Spring Temperature (°C) 0.8 to 1.0 1.7 to 3.3 1.9 to 6.4 

Mean Summer Temperature (°C) 1.3 to 1.4 2.0 to 3.7 2.0 to 6.5 

Mean Autumn Temperature (°C) 2.6 to 2.4 3.2 to 4.9 3.1 to 7.7 

Precipitation in Winter 3% to 3% 5% to 15% 8% to 27% 

Precipitation in Spring 26% to 30% 33% to 45% 33% to 60% 

Precipitation in Summer 34% to 38% 44% to 45% 41% to 46% 

Precipitation in Autumn 27% to 27% 37% to 42% 42% to 67% 

Number of days of growing season 18.0 to 19.0 24.0 to 38.0 25.0 to 61.0 

Growing degree-days during growing season  27% to 27% 40% to 76% 43% to 146% 

Advance in start of growing season (days) 9.0 to 9.0 12.0 to 16.0 13.0 to 28.0 

Climate Moisture Index (sum May-Sept) 0.2 to 1.3 -2.7 to 0.9 -9.2 to 0.1 
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Sahoyúé-§ehdacho National Historic Site 
 
A. Mean Temperature 

 
Seasonal mean temperature at Norman Wells Climatological Station (2202801) from 1943 to 2015. A significant 

trend (P<0.05) observed for winter (0.053°C/yr) and summer (0.022°C/yr). No significant trend (P<0.05) observed 

for spring or autumn. 

B. Total Precipitation 

 
Seasonal total precipitation at Norman Wells Climatological Station (2202800) from 1943 to 2012. No significant 

trend (P<0.05) observed for winter, spring, summer or autumn. 

C. Climate Change Projection for Centre of Historic Site Relative to 1981-2010 Baseline Mean (Appendix 1) 

 

Geo-centroid: 121° 42’ 07.74” W, 65° 39’ 04.20” N; elevation 155m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) 0.9 to 1.7 2.6 to 5.8 2.8 to 10.9 

Mean Spring Temperature (°C) 2.0 to 2.3 3.1 to 5.2 3.3 to 9.1 

Mean Summer Temperature (°C) 2.5 to 2.7 3.2 to 5.0 3.4 to 7.7 

Mean Autumn Temperature (°C) 2.6 to 2.7 3.5 to 5.2 3.4 to 8.3 

Precipitation in Winter 10% to 11% 15% to 26% 22% to 50% 

Precipitation in Spring 11% to 11% 13% to 24% 12% to 44% 

Precipitation in Summer 27% to 28% 38% to 40% 37% to 48% 

Precipitation in Autumn 8% to 9% 16% to 27% 21% to 45% 

Number of days of growing season 26.0 to 27.0 33.0 to 42.0 33.0 to 60.0 

Growing degree-days during growing season  49% to 53% 64% to 104% 70% to 176% 

Advance in start of growing season (days) 13.0 to 13.0 15.0 to 20.0 17.0 to 29.0 

Climate Moisture Index (sum May-Sept) -11.2 to -11.5 -11.6 to -14.7 -12.2 to -19.8 
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Vuntut National Park 
 

A. Mean Temperature 

 
Seasonal mean temperature at Old Crow Climatological Station (2100805) from 1951 to 2015. A significant trend 

(P<0.05) observed for winter (0.088°C/yr), spring (0.043°C/yr), summer (0.041°C/yr) and autumn (0.029°C/yr). 

B. Total Precipitation 

 
Seasonal total precipitation at Old Crow Climatological Station (2100800) from 1952 to 2015. A significant trend 

(P<0.05) observed for winter (0.68mm/yr), spring (0.63mm/yr), summer (1.12mm/yr) and autumn (1.1mm/yr).  

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 

 

Geo-centroid: long. 139° 51’ 53.38” W – lat. 68° 23’ 24.39” N; elevation 377 m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) 1.7 to 2.6 3.7 to 7.5 3.8 to 13.2 

Mean Spring Temperature (°C) 0.5 to 0.8 1.7 to 4.1 2.0 to 8.3 

Mean Summer Temperature (°C) 0.1 to 0.2 0.9 to 2.4 0.9 to 5.2 

Mean Autumn Temperature (°C) 1.8 to 1.8 2.9 to 4.6 2.9 to 7.7 

Precipitation in Winter -18% to -20% -5% to -18% -11% to 9% 

Precipitation in Spring -7% to -7% -7% to 2% -2% to 18% 

Precipitation in Summer 10% to 10% 18% to 27% 20% to 40% 

Precipitation in Autumn 13% to 13% 18% to 36% 20% to 54% 

Number of days of growing season 4.0 to 5.0 10.0 to 23.0 12.0 to 40.0 

Growing degree-days during growing season  4% to 5% 19% to 58% 21% to 132% 

Advance in start of growing season (days) 2.0 to 3.0 6.0 to 14.0 7.0 to 22.0 

Climate Moisture Index (sum May-Sept) -3.5 to -3.7 -4.2 to -5.7 -4.1 to -9.4 
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RCP 2.6 

 

 

RCP 8.5 

 

 

Figure 4. Projected increase in wildfire season length in days from baseline (1981-2010) by 2071-2100 under RCP 

2.6 and 8.5 scenarios (data source: http://cfs.nrcan.gc.ca/fc-data-catalogue).

 

Figure 5. The complex ecosystem linkages and interactions to climate change (from Nantel et al., 2014).  
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Figure 6. Percentage of projected species turnover (50 km x 50 km grid) relative to current species occurrence, assuming full dispersal (i.e., species can move 

into new areas) using ten coupled atmosphere-ocean general circulations models (AOGCMS) as in Lawler et al. (2009) and the A2 emission scenario. Species 

turnover is calculated as a composite measure of species loss (i.e., % of species currently in a cell whose projected future range does not include the cell) and 

species gain (i.e., % increase in species due to range expansion). Data and analysis discussed further in Lindsay et al. (2016). 
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Figure 7. Preliminary map of coastal sensitivity to climate change. Sensitivity is based on coastal materials, landforms, relief, ground ice, wave height, tidal 

range, recent trends in sea ice concentration, and projected sea level rise to 2050. Data provided by Natural Resources Canada (Couture and Manson, 2016).   



19 

 

2.2.2 Other Effects  

 

Ecosystems and Biodiversity 
 Rowland et al. (2016) examined climate-biome shifts for protected areas in Yukon. 

Dramatic shifts are projected for all three national parks. For example, 26% area of 

Kluane, 58% of Vuntut and 68 % of Ivvavik by 2030 and within the century most of the 

national park lands are projected to have shifted “cliome” at least once. Potential shifts 

include the conversion of boreal forest to grassland, arctic tundra to shrubland /forest, and 

alpine areas to forest. Under such a scenario, arctic tundra species (e.g., caribou, 

lemming, nesting shorebirds) could disappear and be replaced by boreal species (e.g., 

moose, snowshoe hare, songbirds) (Prowse et al., 2009) 

 Species response to climate change will vary with abiotic (e.g., isolated by fragmented 

landscape or island context, thermal conditions, etc…), biotic (e.g., competition, habitat) 

and physiological stresses. Some species, or variant forms, will survive and adapt, while 

others may move or face extinction (e.g., Pecl et al., 2017). 

 From a global perspective, vertebrate population abundances have declined by 58% 

between 1970 and 2012 (WWF, 2016). Projections estimate that ~60% of plants and 

~35% of animals will lose over half of their range by 2080 due to climate change 

(Warren et al., 2013). The median rate of northward migration, for those species where 

migration is even attainable, is ~16.9 km/decade (Chen et al., 2011).  

 Sea-level rise and increases in the frequency and magnitude of storm surges are potential 

threats to shorebird and waterbird nesting habitat on low-lying landforms (Galbraith et 

al., 2014).  

 “Temperature velocities” for vegetation biomes are estimated to move northward at the 

rate of 0.43 km/yr for the boreal forest and 0.35 km/yr for the temperate broadleaf forest 

(Batllori et al., 2017; McKenney et al., 2011; Warren et al., 2013). However, 

colonization success will vary with (micro)topography, permafrost conditions, dispersal 

competition, soil, precipitation patterns, disturbance regimes, pollinators and many other 

factors (e.g., Jacobs et al., 2014; Lafleur et al., 2010; McKenney et al., 2007; Warren et 

al., 2013). Nationally, it is suggested that vegetation distribution (biomes) will change in 

over half of Canada`s national park (Scott et al., 2002).  

 Increasing “shrubification” of the arctic and alpine tundra is occurring and will have 

important consequences for herbivore communities, snow distribution, soil chemistry, the  

albedo effect and other aspects of the ecosystems (Myers-Smith et al., 2011). The conifer 

tree line appears to be advancing northward and upwards as well, but at a much slower 

rate (Danby and Hik, 2007). 

 Changes in climate will affect predator-prey relationships, e.g., see research on the lynx 

and snowshoe hare system in Kluane region (Hone et al., 2011).  

 Although greatly diminished, some of the mountainous regions of Ivvavik NP and 

Kluane NPR may continue to provide refugia for some arctic plants (McLennan et al., 

2012; Rowland et al., 2016). Arctic tundra may be lost from Vuntut NP. 

 Animal species will continue to experience range shifts and changes in abundance. (e.g., 

National Audubon Society, 2015). For example, range expansion of some butterflies have 

been observed (Leung and Reid, 2013). 
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 The length of the wildfire season, annual area burned and seasonal severity rating are all 

projected to increase for the region (Flannigan et al., 2013; Haughian et al., 2012; Seidl 

et al., 2017; Wang et al., 2015). 

 Asynchrony between life history events has been observed. Although photoperiod is not 

changing, other ecological cues are changing, such as temperature, river flow, etc. As 

well, earlier peaks in insect and plant biomass have been observed and this may 

mismatch migrant bird hatchling growth and development (Knudsen et al., 2011; Nituch 

and Bowman, 2013). 

 In response to earlier snow melt, arctic passerines and shorebirds are laying eggs earlier 

(Grabowski et al., 2013). 

 With permafrost, glacier and other cryosphere changes, the hydrological cycle will also 

change and intensify affecting water flow volumes, timing and pathways (Wrona et al., 

2016) 

 Climate change will influence environmental chemistry and pollutants, including an 

exacerbation of the effects of acid deposition (lower pH due to higher CO2 levels), 

nutrient loading (precipitation events), and mercury toxicity (released under anoxic 

conditions, warmer waters increase the rate of methylation) (e.g., Michalak, 2016; Noyes 

et al., 2009).  

 The distribution and impacts of pathogens and parasites are expected to increase with 

warmer temperatures and the northward migration of species (Marcogliese, 2008; 2016; 

Pickles et al., 2013). Although it requires further study, the observation and further 

spread of amphibian Ranavirus in Nahanni NPR may have climate change considerations 

(Schock et al., 2010). 

 Conditions, including milder winters and summer drought, may be more favourable for 

invasive species colonization (Langor et al., 2014; Walther et al., 2009) and for more 

extensive forest insect and disease outbreaks (e.g., spruce budworm, forest tent 

caterpillar, gypsy moth) (Warren and Lemmen, 2014; Warren et al., 2013; Weed et al., 

2013).  

 

Visitor Experience  
 Visitation may increase due to an earlier spring and warmer summer and autumn 

conditions. Although still relatively low as compared to parks in southern Canada, it may 

still be necessary to extend the operating season to accommodate visitor demand and 

safety. 

 Decreased snowpack will negatively impact recreational activities such as snowshoeing, 

skiing, ice fishing, ice travel and snowmobiling.  

 Some mosquito-borne diseases also show a connection to climate change, including West 

Nile virus (note: besides humans it can infect over 140 species including horses, crows, 

ravens, etc…) (Chen et al., 2013; Kulkarni et al., 2015). 

 A longer and more intense fire season will affect visitor safety and experience (e.g., 

possible area closures, no campfires, or evacuations). This includes relocating river 

travels downstream in Nahanni NPR (Staple and Wall, 1996). 
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Assets and Infrastructure 
 Deteriorating permafrost is a concern to assets, infrastructure, and roads in this region 

(e.g., Oswell and Nixon, 2015; Perreault and Shur, 2016). 

 Increased storm intensity and less protective ice cover increases the risk of coastal 

flooding and erosion. Projected sea level rise (see vertical allowance projection within 

each site summary) will damage or destroy coastal infrastructure (Lemmen et al., 2016), 

with associated maintenance or relocation costs.  

 Heavy rainfall events may overwhelm drainage system capacities. Changes in spring 

snowmelt runoff (sooner and quicker) increase stream flow intensity and can cause 

floods, especially when snowmelt happens before ice-breakup. 

 There is an increasing risk to assets and infrastructure by wildfire damage in some areas. 

More severe fire weather (heat and drought) may also create conditions where fire 

suppression is no longer feasible or effective (Colombo, 2008; Flannigan et al., 2005).  

 The length of season and reliability of winter roads and travel routes will be reduced 

(Lemmen et al., 2008). 

 

Cultural Resources 
 Permafrost thaw can lead to building destabilization (e.g., slumping foundation of Palace 

Grand Theatre, Laxton and Coates, 2011), more rapid decay of organic building 

materials, and change in use or abandonment if surrounding grounds become too boggy 

(e.g., Blankholm, 2009; Grossi et al., 2007; Marissa et al., 2016). 

 Increased damage or loss of cultural resources is possible during and post- flood, storm 

surge, and wildfire events (Marissa et al., 2016). These concerns extend to Pleistocene 

fossils in Vuntut NP and other parks as well (Parks Canada, 2010; Scott and Suffling, 

2000). 

 Efforts to FireSmart (e.g., replace wood shake roofing) may influence the character or 

cultural integrity of a facility (Marissa et al., 2016). 

 There is a potential for increased deterioration of facilities and collections (e.g., non-

mechanically ventilated interiors, HVACs) from increased temperature, humidity, and 

precipitation, e.g., increased mold, rot and fungal decay; increased corrosion, etc… 

(Brimblecombe, 2014; Brimblecombe and Brimblecombe, 2016; Horowitz et al., 2016; 

Marissa et al., 2016).  

 Coastal erosion plays both a disturbance and discovery role with archaeological sites, 

raising fundamental issues about salvage, identification, protection and site management. 

 Socio-economic impacts through lose or damage to cultural resources may occur. 

 Longer growing seasons and warmer conditions may lead to increased presence and 

abundance of invasive plant species and pests (Marissa et al., 2016). 
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Figure 8. Example of rainfall intensity-duration-frequency curves for future climate scenarios. As illustrated, rainfall 

intensity for the “1 in a 100 year” event at Inuvik (Ivvavik NP) from 60mm/hr to as much as 84mm/hr (5 minute 

duration) and at Fort Simpson (Nahanni NPR) is projected to increase from 165mm/hr to as much as 215mm/hr (5 

minute duration). The IDF_CC Tool (https://www.idf-cc-uwo.ca) permits user driven analysis of future projections 

for climatological stations across the country. 

https://www.idf-cc-uwo.ca/
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3. Climate Change Actions 
 

In general, most protected area agencies in Canada are only beginning to consider and develop 

climate change policies, planning tools, and management frameworks (Lemieux et al., 2011) 

(note: a draft Parks Canada climate change strategy, version 4.4, was last revised in 2008). There 

are, however, examples of adaptation and mitigation actions already underway in individual sites 

and within other jurisdictions that may inspire and guide actions (e.g., Gross et al., 2016; 

Lemieux et al., 2010; US NPS, 2010).  

 

3.1 Adaptation 
 

Adaptation is an adjustment in natural or human systems in response to actual or expected 

climate change impacts. Adaptation in protected areas often involves the implementation of 

established ecosystem-based management practices. These actions can represent “no regrets” 

since they broadly benefit the ecological and commemorative integrity at a site, regardless of the 

rate of climate change. This includes working with regional partners to manage landscape level 

disturbances; protecting and restoring ecosystems to build resilience; preventing the spread of 

invasive species; protecting species at risk; conserving built heritage at historic sites; replacing 

storm damaged resources and infrastructure with more sustainable and resilient designs; and, 

responding to changing visitor interests and needs.  

 

Regional Adaptation Resources: 

 Both Whitehorse and Dawson City have developed climate change adaptation plans 

(Hennessey et al., 2011; Hennessey and Streicker, 2011), which include a wide range of 

actions from improved emergency preparedness, road construction techniques to adapt to 

thawing permafrost, to species conservation strategies. 

 The Pacific Climate Impacts Consortium (PCIC) provides an on-line “Regional Analysis 

Tool” for the Pacific and Yukon Region (https://www.pacificclimate.org/analysis-tools), 

and they have prepared climate change summary reports for specific sites, including 

Whitehorse and Dawson City (Werner et al., 2009; Werner and Murdock, 2008). 

 The Northern Climate ExChange provides climate change information for the region 

(https://www.yukoncollege.yk.ca/research/programs/northern_climate_exchange). For 

example, they maintain a compendium of climate change science activities in the Yukon 

(Northern Climate ExChange, 2014).  

 The Changing Cold Regions Network provides cryospheric and hydrological information 

for the region (http://www.ccrnetwork.ca/) and has recently summarized their activities in 

a report to Parks Canada (CCRN, 2017). 

 The “Arctic Resilience Report” (Arctic Council, 2016) provides adaptation examples and 

case studies. 

 Pearce et al. (2011) reviewed climate change vulnerability in the Inuvialuit Settlement 

Region of the western Arctic, providing insights to advance adaptation planning. 

 Rowland et al. (2016) discusses the importance of maintaining connectivity across 

protected areas in Yukon. 

 

  

https://www.pacificclimate.org/analysis-tools
https://www.yukoncollege.yk.ca/research/programs/northern_climate_exchange
http://www.ccrnetwork.ca/
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Figure 9. Greenhouse Gas Emissions per Field Unit. 

Emissions are calculated from energy (e.g., heating, 

electricity) and fuel expenditures, excluding travel, air 

charters, and some other sources. GHG emissions from 

energy cost are adjusted for source (e.g., coal, hydro, 

diesel, etc...). The targets in these figures are from 

2015 reduction targets (Parks Canada, 2015). Revised, 

lower targets to be communicated in 2017 (Canada, 

2016).   

 
 

 

3.2 Mitigation 
 

Mitigation refers to human interventions that reduce the source or enhance the sinks of 

greenhouse gas emissions. Carbon dioxide, methane, nitrous oxide, water vapour and ozone are 

the primary GHGs in the earth’s atmosphere, in addition to human-made chlorine- and bromine-

containing substances. Parks Canada’s Asset and Environmental Management team provides 

national functional leadership, expertise and support related to GHG reductions. Sites interested 

in working on GHG reduction and more sustainable operations should confer with this team. As 

an example, this team annually tracks all Field Unit energy expenditures and GHG emissions and 

reports progress towards federal government reduction targets. The current target is 40% 

reduction in GHG emissions from federal buildings and fleets below the 2005 levels by 2030 

(Canada, 2016); it is clear that this will require an ambitious and concerted effort on the part of 

all. 

 

Mitigation examples include:  

 Evaluate progress towards Parks Canada / Field Unit GHG reduction targets. 

 Specify “green” and energy efficient designs for construction and renovation projects.  

 Reduce the number and/or size of park vehicles and vessels to match need and maximize 

efficiency. Provide hybrid or electric where possible. 

 Electric utility and lawn vehicles for campground maintenance. 

 Anti-idling and cabin heat-recovery systems in trucks.  
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 Use energy efficient products, promote energy efficiency and water conservation, reduce 

waste and support alternative transportation. 

 Review Parks Canada (2015) and US NPS (2012a). 

 

3.3 Possible Next Steps 
 

This report is intended to be a stepping off point, from here individuals and sites are encourage to 

consider how best to advance climate change actions in their own context. Here is a checklist of 

ideas that others have considered that may be of particular interest or relevance. 

 

 Enhance workforce climate literacy (e.g., Peterson et al., 2011; US NPS, 2012b).  

 

 Undertake more detailed analysis of climate trends, including impact models (e.g., 

hydrology, wildfire, infrastructure at risk, coastal visualization) and extreme weather 

events (e.g., Charron, 2016). 

 

 Conduct future scenario planning and explore operations under novel and equally 

plausible future conditions. Use scenarios to test (“wind tunnel”) strategic decisions and 

inform contingency plans (e.g., Gross et al., 2016; US NPS, 2013). 

 

 Conduct vulnerability assessments of species, ecosystems or governance structures. 

Vulnerability is the degree to which a system is susceptible to, and unable to cope with, 

the impacts of climate change (e.g., Edwards et al., 2015; Gleeson et al., 2011; Gross et 

al., 2016).  

 

 Incorporate climate change impacts and adaptation strategies into management planning. 

Recalibrate management objectives in the face of ecosystem change, system novelty and 

loss of resilience (e.g., Lemieux et al., 2011).  

 

 Revise visitor management and operational plans in response to changing visitor patterns 

and use (e.g., Fisichelli et al., 2015; Hewer et al., 2016). Diversify visitor experiences to 

provide alternatives to weather-dependent activities. 

 

 Quantify and understand carbon stocks and dynamics (e.g., US NPS, 2012a).  

 

 Evaluate and communicate the value of ecological goods and services (e.g., clean 

water/air, provision of food, maintain biodiversity, nature-based tourism, carbon storage, 

etc…) and manage for the sustainability of these services (e.g., Gross et al., 2016).  

 

 Maintain a list of climate science and management actions to help inform and influence 

park messaging. 

 

 Build networks and collaborate across multiple scales (e.g., Waterton Lakes NP, 

crownmanagers.org). 

 

 “FireSmart” facilities and infrastructure (Hirsch et al., 2001). 

http://crownmanagers.org/
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 Consider the Public Infrastructure Engineering Vulnerability Committee (PIEVC) 

protocol (https://pievc.ca/protocol) in climate change vulnerable infrastructure projects.  

 

 “Explicitly recognize climate change as a management issue in state of the park reporting 

and monitoring frameworks”. This adaption option was one of two from 165 options 

deemed as necessary and “definitely implementable” by senior decision-makers for the 

Ontario park system (Lemieux and Scott, 2011).  

 

Please contact the Office of the Chief Ecosystem Scientist if you have any questions or would 

like to explore any of these next steps further. In addition, PDF copies of all references and the 

climate data are freely available upon request.   

 

  

https://pievc.ca/protocol
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Appendix 1. Climate Change Projections 
 

Climate change summaries were determined for the geo-centroid1 of each national park and 

national marine conservation area. The method used to prepare the map followed Price et al. 

(2011) and used greenhouse gas (GHG) concentration scenarios adopted by the IPCC (2014) and  

General Circulation Models (GCMs)2. 

 

Of the four IPCC GHG concentration scenarios, the lowest and highest Representative 

Concentration Pathways (RCP), RCP 2.6 and RCP 8.5 were chosen. These are named after 

possible radiative forcing values in the year 2100 relative to pre-industrial values (i.e., +2.6 and 

+8.5 watts/m2, respectively). RCP 2.6 assumes that global annual GHG emissions (measured in 

CO2-equivalents) peak in 2010-2020, with emissions declining substantially thereafter. In RCP 

8.5, emissions continue to rise throughout the 21st century.   

 

To produce a high-resolution climate map, 

monthly time-series data were obtained for each 

GCM representing both the 20th century (1981–

2010) and the scenarios of greenhouse gas 

concentration for the 21st century. Each monthly 

value at each GCM grid node was normalized 

either by subtracting (for temperature variables) or 

dividing by (for other climate variables) the mean 

of that month’s values for the 30-year baseline 

period 1981–2010. The GCM projected changes in 

temperature and precipitation were averaged over 

30-year periods and then interpolated using 

ANUSPLIN to the locations of climate stations in 

Canada and the USA. These data were then 

combined with observed station normals for the 

period 1981–2010 to create projected normals for 

three consecutive 30-year periods: 2011–2040, 

2041–2070 and 2071–2100. 

 

A Bessel interpolation scheme was used to generate daily temperature and precipitation 

sequences that pass monotonically through the monthly values. This allowed for a suite of 

bioclimatic indicator variables to be estimated for these periods, including for example, mean 

growing season duration and precipitation during the growing season (Table A1). A set of 

composite maps averaging the values of the four GCMs was created and used to extract the 

projected climatic data for the parks and NMCAs at each geo-centroid.  

 

No model driven by scenarios of future climate can ever provide definitive answers to questions 

about specific outcomes (e.g., how much change will occur at a specified location by a 

specified date?). However, temperature projections aligned with recent trends and there appears 

                                                 
1 In the cases of parks for which the geo-centroid is located in the sea, we extracted the data for 5 sets of coordinates 

determined to be on the land using Google maps. 
2 CANESM2, CESM1CAM5, HADGEM2ES, and MIROCESM. 

Figure A1. Projected change in annual daily 

minimum temperature for 2041-2070, relative to 

1961-1990 (Price et al., 2011). 
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to be strong agreement on the magnitude of warming to be expected in the short term (until 

2030–2040), independent of the RCP scenarios. This is because much of the warming projected 

for the next two to three decades is “committed warming” resulting from greenhouse gas 

emissions that have already occurred. It is only after ca. 2040 that the warming trajectories 

diverge, when early mitigation efforts (RCP 2.6 scenario) would evidently begin to have a 

positive effect. Further into the future, the range of possible warming increases, largely 

because of the divergence among the different greenhouse gas emission trajectories.  

 

Table A1. Bioclimatic variables mapped for past and future climatesa 
No. Variableb Description 

1  Annual mean temperature  Annual mean of monthly mean temperatures  

2  Mean diurnal temperature range  Annual mean of monthly mean daily temperature ranges  

3  Isothermality  Variable 2 ÷ variable 7  

4  Temperature seasonality  Standard deviation of monthly mean temperature estimates, 

expressed as a percentage of their mean  

5  Maximum temperature of warmest period  Highest monthly maximum temperature  

6  Minimum temperature of coldest period  Lowest monthly minimum temperature  

7  Annual temperature range  Variable 5 – variable 6  

8  Mean temperature of wettest quarter  Mean temperature of three wettest consecutive months  

9  Mean temperature of driest quarter  Mean temperature of three driest consecutive months  

10  Mean temperature of warmest quarter  Mean temperature of three warmest months  

11  Mean temperature of coldest quarter  Mean temperature of three coldest months  

12  Annual precipitation  Sum of monthly precipitation values  

13  Precipitation of wettest period  Precipitation of wettest month  

14  Precipitation of driest period  Precipitation of driest month  

15  Precipitation seasonality  Standard deviation of monthly precipitation estimates, 

expressed as a percentage of their mean  

16  Precipitation of wettest quarter  Total precipitation of three wettest consecutive months  

17  Precipitation of driest quarter  Total precipitation of three driest consecutive months  

18  Precipitation of warmest quarter  Total precipitation of three warmest months  

19  Precipitation of coldest quarter  Total precipitation of three coldest months  

20  Start of growing season  Date when daily mean temperature first meets or exceeds 5°C 

for five consecutive days in spring  

21  End of growing season  Date when daily minimum temperature first falls below –2°C 

after 1 August  

22  Growing season length  Variable 21 – variable 20  

23  Total precipitation in the three months 

before start of growing season  

Total precipitation in the three months before variable 20  

24  Total growing season precipitation  Total precipitation during variable 22  

25  Growing degree-days during growing 

season  

Total degree-days during variable 22, accumulated for all 

days where mean temperature exceeds 5°C  

26  Annual minimum temperature  Annual mean of monthly minimum temperatures  

27  Annual maximum temperature  Annual mean of monthly maximum temperatures  

28  Mean temperature during growing season  Mean temperature during variable 22  

29  Temperature range during growing 

season  

Highest minus lowest temperature during variable 22  

30 Climate Moisture Index (monthly) Precipitation minus potential evapotranspiration 
a In all cases, the descriptions should be considered estimates rather than actual values.  
b Variables 1–19 were generated by ANUCLIM; variables 20–29 were generated by SEEDGROW. The approach used creates a 

daily sequence of minimum and maximum temperature and precipitation, with the values forced monotonically through the 

monthly values. The resulting values are intended to represent mean conditions only, as the weather in any given year would be 

expected to produce different results, because of interannual variability. 
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