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This report is one in a series that provides a regional summary of observed and projected 

climate change trends and impacts facing all of Canada’s national parks, national marine 

conservation areas and certain national historic sites. This is an internal document to Parks 

Canada and is intended to encourage and inform broader conversations and support place–

based actions on climate change.  

 

The “Let’s Talk about Climate Change” series regions are defined by biogeoclimatic and 

operational similarities, and include: 1) Atlantic Region; 2) Quebec Region; 3) Great Lakes 

Region; 4) Prairie and Boreal Plains Region; 5) Mountain Region; 6) Pacific Region; 7) 

Northwest Region; and, 8) Arctic and Hudson Plains Region. 

 

 

 

 

This report and others in the series are available at the Parks Canada Climate Change SharePoint 

Website: http://collaboration/sites/PD010/SitePages/Home.aspx 
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1. Introduction 
 

The fifth and most recent report from the Intergovernmental Panel on Climate Change (IPCC, 

2014) establishes with certainty that the Earth’s climate system is warming, “and since the 

1950’s, many of the observed changes are unprecedented over decades to millennia”. Human 

activity has increased atmospheric concentrations of greenhouse gas (GHG) to levels not 

observed in at least the last 800,000 years. Worldwide, a rapidly changing climate is having 

profound impact on our social-ecological systems, amplifying existing risks and creating new 

ones.  

 

Canada’s rate of warming is about double the global rate (even greater in the north) and the last 

three decades have been the warmest 30-year period in at least 1,400 years. Some of the 

observed changes include shifts in species distribution and abundance, glacier loss, thawing 

permafrost, decreasing sea ice, earlier ice break-ups, increasing wildfires, sea level rise along 

some coasts, changes to phenology, and an increase in extreme weather events such as heat 

waves, droughts, heavy rainfall and more (e.g., Lemmen et al., 2016; Warren and Lemmen, 

2014). The risks and impacts are felt across Parks Canada, from the ecosystems and cultural 

resources we protect, to the facilities and infrastructure we build and maintain, to the visitor 

experiences we offer - and most concerning, these impacts are projected to increase for decades 

to come. It is an uncertain and complex context, one which will test the adaptive capacity and 

effectiveness of policy, planning, and management frameworks. 

 

To advance place-based climate response efforts, this document is one in a series of regional 

reports that provides accessible summary information about climate change in Canada’s national 

parks, national marine conservation areas (NMCAs) and certain national historic sites. For some 

sites this will support preliminary conversations on climate change and for others the content will 

be eclipsed by a need for more detailed vulnerability assessments, adaptation strategies and 

decision support tools. Regardless, the intent is to encourage and equip individuals and sites to 

talk about climate change, both internally and externally, and consider the challenges in their 

own context.  

 

1.1. “Natural Solution” Concept 
 

As a lead conservation and protected area agency, and the largest federal land owner and third 

largest federal asset manager in the country, Parks Canada’s response to climate change is a 

matter of importance. Part of the response will involve recognizing and positioning protected 

areas as a “natural solution” to climate change in regional, national and international plans and 

programs (e.g., Dudley et al., 2010; Lopoukhine et al., 2012; NAWPA, 2012). 

   

As a “natural solution”, well-designed and effectively managed protected areas: 

 Mitigate climate change through the sequestration and storage of carbon in forests, 

coastal wetlands (“blue carbon”) and other natural ecosystems. 

 Protect biodiversity by providing a safe haven for species. 

 Enhance connectivity and species movements within and across protected area networks. 
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 Provide essential ecosystem goods and services, such as clean water, erosion control, 

flood/storm water protection, genetic diversity, cultural opportunities, etc… 

 Serve as a benchmark for climate change related research and monitoring. 

 Provide a context for social learning, good governance, and adaptive management.  

 Help people and communities cope by supporting sustainable and resilient economies in 

and around protected areas and promoting social well-being (healthy parks – healthy 

people). 

 Demonstrate environmental stewardship through “green” design and conservation 

practices. 

 Create and facilitate meaningful experiences that help to inspire, inform, and guide 

actions in response to climate change.      

 

 

 
Figure 1. National Park Reserves (NPR) and the National Marine Conservation Area Reserve (NMCAR) included in 

this regional assessment. 

Gwaii Haanas
NPR, NMCAR and
Haida Heritage Site

Gulf Islands NPR

Pacific Rim NPR
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2. Observed and Projected Climate Trends 
 

This section provides site specific summaries of historic observed temperature and precipitation 

trends as well as future climate projections. These are only a subset of the climate variables 

available for analysis and presentation (see Appendix 1).  

 

2.1 Methods 
 

Historic observed mean monthly temperature and total precipitation data was accessed from the 

Adjusted and Homogenized Canadian Climate Data website (http://www.ec.gc.ca/dccha-ahccd) 

for the climatological stations within or closest to each protected area. Temperature and 

precipitation stations were not always in the same location and preference was given to selecting 

stations with the longest and most current data for a protected area. All available years were 

plotted and the trend was determined using a generalized linear model (R Core Team, 2014) 

including 95% confidence intervals. For the analysis, winter = December, January and February; 

spring = March, April and May; summer = June, July and August; and, autumn = September, 

October and November. 

  

A table with future climate change projections was determined for the centre of each protected 

area. Season by season descriptions were provided to complement the earlier park-based 

assessments by Scott and Suffling (2000) and to help inform seasonal operations and activities. 

The climate projections were determined following Price et al. (2011) and used the average of 

four General Circulation Models (GCMs) and the lowest and highest Representative 

Concentration Pathway (RCP) GHG scenarios (Vuuren et al., 2011). The RCP 2.6 (lowest) 

scenario assumes that we take action and GHG emissions peak in 2010-2020 and decline 

thereafter. The RCP 8.5 (highest) scenario assumes we take no action and emissions continue to 

rise throughout the 21st century. Figures 2 and 3 also include a projection based on the RCP 4.5 

scenario, where emissions peak around 2040 and then decline.  

 

Vertical allowances for each site were acquired from the Canadian Extreme Water Level 

Adaptation Tool (CAN-EWLAT, http://www.bio.gc.ca/science/data-donnees/index-en.php). The 

vertical allowances are “recommended changes in the elevation of coastal infrastructure required 

to maintain the current level of flooding risk in a future scenario of sea level rise”. These 

estimates are based on a future projection of regional sea level rise using the RCP 4.5 and RCP 

8.5 scenarios and the historical water level records, including both tides and storm surge. The 

historical records do not incorporate predicted changes in storm tides. 

 

2.2 Regional Climate Change Summaries 
 

2.2.1 Physical Effects 
 

 In the last century, average annual air temperatures for the region have increased by 

1.3°C (Lemmen et al., 2016; PCIC, 2013a; 2013b). All seasons are warming, however 

summer temperatures have increased the fastest (0.22-0.26°C/decade) (PCIC, 2013a; 

2013b). This warming trend is projected to continue and model results indicate a further 

http://www.ec.gc.ca/dccha-ahccd
http://www.bio.gc.ca/science/data-donnees/index-en.php
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increase of 1.2-5.0°C by 2100, depending on the location and RCP scenario used (see 

figure 2; FLNR, 2016) . 

 Precipitation patterns naturally exhibit high variability and climate change trends are 

difficult to discern (PCIC, 2013a; 2013b). It is anticipated that warmer winter and spring 

temperatures will reduce the percentage of precipitation falling as snowfall. Furthermore, 

there is concern that extreme-rainfall events will become more frequent, already 20-25% 

of the regions precipitation falls in heavy rain events (Lemmen et al., 2016; PCIC, 

2013a). This may increase risk of flooding, landslides and sediment load in drinking 

water sources. Summer water supplies is a concern for some coastal communities. 

 Adding to the complexity, positive phases of the Pacific Decadal Oscillation (40-60 year 

cycle) and El Niño-Southern Oscillation (3-5 year cycle) increase the likelihood of a 

warm and dry winter and spring in the region (St Jacques et al., 2014). Summer and 

autumn correlations are weaker. A cool and wet winter and spring tends to be associated 

with the opposite phases (Fleming and Whitfield, 2010). See examination of climate 

modes effects on streamflow in Georgia-Puget Sound Region (Gulf Island NP)(Fleming 

et al., 2007). 

 There are local differences in the magnitude of sea level change due to factors such as 

vertical land motion (e.g., tectonic activity and glacial isostatic rebound) and ocean 

currents. For example, sea levels at Tofino (Pacific Rim NPR) have fallen by 8.4 cm and 

at Victoria (Gulf Islands NPR) have risen by 3.1 cm in last 50 years (data available, 

http://www.psmsl.org/data; Christian and Foreman, 2013; Lemmen et al., 2016). 

Projections for the region indicate a 30-70 cm sea level rise by 2100 (James et al., 2014).  

 Saltwater intrusion of groundwater may become more of a concern with higher sea levels 

(Chang et al., 2011; Rasmussen et al., 2013). 

 Walker and Barrie (2006) describe geomorphological impacts of rising sea levels and 

storm surges on Haida Gwaii. With sea level rise, rates of coastal erosion will vary with 

landform. While cliffs or bluffs will only recede, marshes, sand dunes and beaches are 

more dynamic and have the capacity to re-establish and undergo morphological change 

(e.g., landward migration, overwash and erosion)(e.g., Nye, 2010).  
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Figure 2a. Gwaii Haanas. Temperature projections represent a composite (average) of four spatially interpolated 

downscaled Global Circulation Models: CanESM2, CESM1CAM5, HADGEM2ES and MIROCESM, using three 

greenhouse gas scenarios (RCPs) for three future time periods. Climate data provided by Natural Resources Canada, 

Canadian Forest Service, Sault Ste. Marie (http://cfs.nrcan.gc.ca/projects/3).  
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Figure 2b. Pacific Rim and Gulf Islands. Temperature projections represent a composite (average) of four spatially 

interpolated downscaled Global Circulation Models: CanESM2, CESM1CAM5, HADGEM2ES and MIROCESM, 

using three greenhouse gas scenarios (RCPs) for three future time periods. Climate data provided by Natural 

Resources Canada, Canadian Forest Service, Sault Ste. Marie (http://cfs.nrcan.gc.ca/projects/3).  
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 Total Annual Precipitation 
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Figure 3a. Gwaii Haanas. Precipitation projections represent a composite (average) of four spatially interpolated 

downscaled Global Circulation Models: CanESM2, CESM1CAM5, HADGEM2ES and MIROCESM, using three 

greenhouse gas scenarios (RCPs) for three future time periods. Climate data provided by Natural Resources Canada, 

Canadian Forest Service, Sault Ste. Marie (http://cfs.nrcan.gc.ca/projects/3). 
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Figure 3b. Pacific Rim and Gulf Islands. Precipitation projections represent a composite (average) of four spatially 

interpolated downscaled Global Circulation Models: CanESM2, CESM1CAM5, HADGEM2ES and MIROCESM, 

using three greenhouse gas scenarios (RCPs) for three future time periods. Climate data provided by Natural 

Resources Canada, Canadian Forest Service, Sault Ste. Marie (http://cfs.nrcan.gc.ca/projects/3).  

< -500

-500 - -400

-400 - -300

-300 - -200

-200 - -100

-100 - 0

0 - 100

100 - 200

200 - 300

300 - 400

400 - 500

> 500

http://cfs.nrcan.gc.ca/projects/3


9 

 

Gulf Islands National Park Reserve 
 

A. Mean Temperature 

Seasonal mean temperature at Victoria Climatological Station (1018621) from 1898 to 2015. A significant trend 

(P<0.05) observed for winter (0.012°C/yr), spring (0.006°C/yr) and summer (0.008°C/yr). No significant trend 

(P<0.05) observed for autumn. 

B. Total Precipitation 

 
Seasonal total precipitation at Victoria Climatological Station (1018620) from 1899 to 2013. A significant trend 

(P<0.05) observed for spring (0.39mm/yr). No significant trend (P<0.05) observed for winter, summer or autumn. 

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 
Geo-centroid: 123° 12’ 56.05” W, 48° 45’ 48.68” N; elevation 96m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) 0.9 to 1.2 1.8 to 3.2 2.1 to 5.1 

Mean Spring Temperature (°C) 0.9 to 0.8 1.6 to 2.7 1.8 to 4.7 

Mean Summer Temperature (°C) 0.9 to 0.9 1.7 to 3.1 1.5 to 5.9 

Mean Autumn Temperature (°C) 0.9 to 0.9 1.6 to 2.8 1.5 to 5.5 

Precipitation in Winter (%) 16% to 14% 18% to 20% 20% to 20% 

Precipitation in Spring (%) -5% to -5% -1% to -1% -4% to 0% 

Precipitation in Summer (%) -13% to -17% -6% to -17% -4% to -27% 

Precipitation in Autumn (%) 2% to 1% 2% to 4% 9% to 2% 

Growing degree-days during growing season  15% to 16% 29% to 54% 31% to 99% 

Climate Moisture Index (sum May-Sept) -24.6 to -25.0 -25.5 to -29.8 -24.2 to -38.1 

 

D.  Sea Level Vertical Allowance, Patricia Bay, BC 
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Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve 

and Haida Heritage Site 
 

A. Mean Temperature

 
Seasonal mean temperature at Sandspit Climatological Station (1057050) from 1945 to 2015. A significant trend 

(P<0.05) observed for winter (0.028°C/yr), spring (0.016°C/yr), summer (0.018°C/yr) and autumn (0.012°C/yr). 

B. Total Precipitation 

 
Seasonal total precipitation at Sandspit Climatological Station (1057050) from 1949 to 2015. A significant trend 

(P<0.05) observed for spring (1mm/yr). No significant trend (P<0.05) observed for winter, summer or autumn. 

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 

Geo-centroid: 131° 28’ 36.25” W, 52° 25’ 50.36” N; elevation 192m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) 0.5 to 0.8 1.3 to 2.6 1.7 to 4.4 

Mean Spring Temperature (°C) 0.6 to 0.8 1.4 to 2.4 1.6 to 4.0 

Mean Summer Temperature (°C) 1.1 to 1.0 1.8 to 3.0 1.9 to 4.9 

Mean Autumn Temperature (°C) 1.1 to 1.1 1.8 to 2.9 1.9 to 5.1 

Precipitation in Winter 13% to 16% 19% to 25% 19% to 28% 

Precipitation in Spring 9% to 13% 11% to 12% 13% to 16% 

Precipitation in Summer -4% to 4% 0% to -11% -14% to 2% 

Precipitation in Autumn 20% to 22% 24% to 27% 24% to 36% 

Number of days of growing season 50.0 to 80.0 80.0 to 80.0 80.0 to 80.0 

Growing degree-days during growing season  22% to 22% 43% to 79% 47% to 139% 

Advance in start of growing season (days) 50.0 to 80.0 80.0 to 80.0 80.0 to 80.0 

Climate Moisture Index (sum May-Sept) 51.0 to 53.0 43.2 to 49.2 39.3 to 52.1 

 

D.  Sea Level Vertical Allowance, Queen Charlotte City, BC 
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Pacific Rim National Park Reserve 
 

A. Mean Temperature 

 
Seasonal mean temperature at Estevan Point Climatological Station (1032730) from 1923 to 2015. A significant 

trend (P<0.05) observed for spring (0.009°C/yr) and summer (0.011°C/yr). ). No significant trend (P<0.05) observed 

for winter or autumn.  

B. Total Precipitation 

 
Seasonal total precipitation at Pachena Point Climatological Station (1035940) from 1925 to 2015. A significant 

trend (P<0.05) observed for spring (1.77mm/yr). No significant trend (P<0.05) observed for winter, summer or 

autumn. 

C. Climate Change Projection for Centre of Park Relative to 1981-2010 Baseline Mean (Appendix 1) 

Geo-centroid: 125° 08’ 49.54” W, 48° 49’ 37.40” N; elevation 0 m 

Increase / decrease in: 2011-2040 2041-2070 2071-2100 

Mean Winter Temperature (°C) 0.9 to 1.2 1.7 to 3.0 2.1 to 4.8 

Mean Spring Temperature (°C) 1.1 to 1.1 1.9 to 2.9 2.0 to 4.6 

Mean Summer Temperature (°C) 1.3 to 1.4 2.1 to 3.3 2.0 to 5.6 

Mean Autumn Temperature (°C) 1.2 to 1.3 1.9 to 3.1 1.9 to 5.4 

Precipitation in Winter -4% to -4% -1% to 1% 1% to 3% 

Precipitation in Spring -5% to -6% -2% to -3% -2% to -6% 

Precipitation in Summer -20% to -23% -16% to -26% -15% to -31% 

Precipitation in Autumn -1% to -3% -1% to 1% 2% to 7% 

Number of days of growing season 0.0 to 0.0 0.0 to 0.0 0.0 to 0.0 

Growing degree-days during growing season  24% to 25% 42% to 67% 44% to 114% 

Advance in start of growing season (days) 0.0 to 0.0 0.0 to 0.0 0.0 to 0.0 

Climate Moisture Index (sum May-Sept) 17.4 to 19.1 13.6 to 18 6.5 to 20.7 

 

D.  Sea Level Vertical Allowance, Bamfield, BC 
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RCP 2.6 

 

RCP 8.5 

 

 

Figure 4. Projected increase in wildfire season length in days from baseline (1981-2010) by 2071-2100 under RCP 

2.6 and 8.5 scenarios (data source: http://cfs.nrcan.gc.ca/fc-data-catalogue). 

 

Figure 5. The complex ecosystem linkages and interactions to climate change (from Nantel et al., 2014)  
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Figure 6. Percentage of projected species turnover (50 km x 50 km grid) relative to current species occurrence, assuming full dispersal (i.e., species can move 

into new areas) using ten coupled atmosphere-ocean general circulations models (AOGCMS) as in Lawler et al. (2009) and the A2 emission scenario. Species 

turnover is calculated as a composite measure of species loss (i.e., % of species currently in a cell whose projected future range does not include the cell) and 

species gain (i.e., % increase in species due to range expansion). Data and analysis discussed further in Lindsay et al. (2016). Does not illustrate species turnover 

for Gwaii Haanas or Gulf Islands because of the resolution of the analysis. 
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Gwaii Haanas Pacific Rim and Gulf Islands 

Figure 7. Preliminary map of coastal sensitivity to climate change. Sensitivity is based on coastal materials, landforms, relief, ground ice, wave height, tidal 

range, recent trends in sea ice concentration, and projected sea level rise to 2050. Data provided by Natural Resources Canada (Couture and Manson, 2016).   
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2.2.2 Other Effects  

 

Ecosystems and Biodiversity 
 Species response to climate change will vary with abiotic (e.g., isolated by fragmented 

landscape or island context, thermal conditions, etc…), biotic (e.g., competition, habitat) 

and physiological stresses. Some species, or variant forms, will survive and adapt, while 

others may move or face extinction (e.g., Pecl et al., 2017). 

 Rising levels of atmospheric CO2 are also increasing the amount of CO2 absorbed by the 

oceans. This causes the oceans to become more acidic, affecting the ability of marine 

organisms to form calcareous skeletal structures and fix carbon (Doney et al., 2009; 

Fabry et al., 2008; Orr et al., 2005). Haigh et al. (2015) explore the impact to marine 

ecosystems and fisheries in the region. In general, this a serious concern and the need for 

more regional data is cited (e.g., Christian and Foreman, 2013).  

 The total turnover (loss and gain) of marine fishes and invertebrates is expected to be 

high throughout the region due to climate change (Cheung et al., 2011). As examples, 

there is some evidence of a contributing link to jellyfish population explosions (Purcell, 

2012) as well as on the distribution of Humboldt squid (and associated impact on 

groundfish species (Zeidberg and Robison, 2007). Hare and Mantua (2000) provide 

evidence of climate driven regime shifts in the North Pacific in 1977 and 1989. A 

northward movement of many pelagic fish species is projected (Cheung et al., 2015).    

 Increasing inland water temperatures may exceed the thermal tolerance for some species 

(e.g., salmon) and cause behavioural changes, increase incidence of disease, etc… (e.g., 

Martins et al., 2011; Poesch et al., 2016). 

 From a global perspective, vertebrate population abundances have declined by 58% 

between 1970 and 2012 (WWF, 2016). Projections estimate that ~60% of plants and 

~35% of animals will lose over half of their range by 2080 due to climate change 

(Warren et al., 2013). The median rate of northward migration, for those species where 

migration is even attainable, is ~16.9 km/decade (Chen et al., 2011).  

 Coastal marshes can migrate landward, however, this can be blocked by natural slopes or 

human structures, a situation known as “coastal squeeze” (Pontee, 2013).  

 Sea-level rise and increases in the frequency and magnitude of storm surges are potential 

threats to waterbird nests and breeding habitat on low-lying landforms, such as barrier 

islands and beaches (e.g., Bourque et al., 2015; Craik et al., 2015; Tremblay et al., 2006).  

 First Nation fishery catch potentials are projected to decline (Weatherdon et al., 2016). 

 Wildlife species will continue to experience range shifts and changes in abundance. (e.g., 

National Audubon Society, 2015).  

 Climate change will influence environmental chemistry and pollutants, including an 

exacerbation of the effects of acid deposition (lower pH due to higher CO2 levels), 

nutrient loading (precipitation events), and mercury toxicity (released under anoxic 

conditions, warmer waters increase the rate of methylation) (e.g., Michalak, 2016; Noyes 

et al., 2009). No significant change in the regions ocean surface water pH has been 

observed since 1934 (DFO, 2012). 

 Asynchrony between life history events has been observed. Although photoperiod is not 

changing, other ecological cues are changing, such as temperature, river flow, etc… 

Earlier peaks in insect and plant biomass have been observed and this may mismatch 
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migrant bird hatchling growth and development (Knudsen et al., 2011; Nituch and 

Bowman, 2013). As an example, the timing of Cassin’s and Rhinoceros auklet nestlings 

and peak populations of its copepod prey are beginning to mismatch (i.e., warmer oceans 

have advanced copepod populations) (Bertram, 2001). 

 The distribution and impacts of pathogens and parasites are expected to increase with 

warmer temperatures and the northward migration of species (Marcogliese, 2008; 2016; 

Pickles et al., 2013).  

 “Temperature velocities” for forest biomes are estimated to move northward, however, 

colonization success will vary with (micro)topography, permafrost conditions, dispersal 

competition, soil, precipitation patterns, disturbance regimes, pollinators and many other 

factors (e.g., Hamann and Wang, 2006; Jacobs et al., 2014; Lafleur et al., 2010; 

McKenney et al., 2007; Warren et al., 2013). Nationally, it is suggested that vegetation 

distribution (biomes) will change in over half of Canada`s national park (Scott et al., 

2002).  

 To facilitate Garry oak conservation in the context of climate change, Pellatt et al. (2012) 

developed bioclimatic models for future habitat distribution. They discuss the need to 

maintain connectivity.   

 Conditions, including milder winters and summer drought, may be more favourable for 

invasive species colonization (Langor et al., 2014; Walther et al., 2009) and for more 

extensive forest insect and disease outbreaks (e.g., spruce budworm, forest tent 

caterpillar, gypsy moth) (Warren and Lemmen, 2014; Warren et al., 2013; Weed et al., 

2013). 

 The alpine tree line is projected to move upslope. For example the current coastal western 

hemlock and mountain hemlock climate zones are predicted to move upwards by 200-300 

m in elevation by 2050 (FLNR, 2016; Wang et al., 2012). Of note, the impact is 

compounded by the fact increasing deposition of atmospheric nitrogen is facilitating 

(through fertilization) plant species colonization (including invasive species) of the alpine 

tundra through (Bobbink et al., 2010; Porter et al., 2011). 

 Conditions, including milder winters and summer drought, may be more favourable for 

invasive species colonization (Walther et al., 2009) and for more extensive forest insect 

and disease outbreaks (e.g., spruce beetles, Swiss needle cast, western hemlock 

loopers)(Warren and Lemmen, 2014).  

 Length of the wildfire season and area burned is expected to increase (Boulanger et al., 

2013; Wang et al., 2015; Whitman et al., 2015). 

 

Visitor Experience  
 Visitation may increase due to an earlier spring and warmer summer and autumn 

conditions. For example, Scott and Jones (2006) project a 13-37% increase in visitation at 

Pacific Rim NPR by 2050.  

 When temperatures exceeded 25-30˚C, a strong decrease in visitation has been observed 

in some parks (Fisichelli et al., 2015; Hewer et al., 2016). 

 It may be necessary to extend the operating season to accommodate visitor safety and 

demand. 

 There are concerns to human health from increased disease risks. For example, Lyme 

disease (bacterial disease transmitted by an infected tick) which was formerly restricted 
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to localized areas by temperature and relative humidity, is expected to expand by mid-

century (Eisen et al., 2016; Ogden et al., 2006). Some mosquito-borne diseases also show 

a connection to climate change, including West Nile virus (Chen et al., 2013; Kulkarni et 

al., 2015). 

 A longer and more intense fire season will affect visitor safety and experience (e.g., 

possible area closures, no campfires, or evacuations).   

 

Assets and Infrastructure 
 Increased storm surge intensity increases the risk of coastal flooding and erosion (PCIC, 

2016). Projected sea level rise (see vertical allowance projection within each site 

summary) will damage and destroy coastal infrastructure (Lemmen et al., 2016), with 

associated maintenance or relocation costs.  

 Saltwater intrusion of aquifers may impact potable water sources.   

 Some facilities may be more vulnerable to the expected increase in wind gust events 

(Cheng et al., 2014).  

 Intense rainfall can result in flooding and landslides, which potentially can damage assets 

and infrastructure and overwhelm stormwater system capacities (PCIC, 2013a). 

 There is an increasing risk to assets and infrastructure by wildfire damage in some areas. 

More severe fire weather (heat and drought) may also create conditions where fire 

suppression is no longer feasible or effective (Colombo, 2008; Flannigan et al., 2005).  

 Designing or retrofitting stormwater systems and hydraulic structures to accommodate 

new “normal” precipitation and temperature patterns will be necessary. Larger structures 

can serve both a drainage and road “ecopassage” function, thus making landscape more 

permeable to water flow and species movements. 

 

Cultural Resources 
 Increased damage or loss of cultural resources is possible during and post- flood, storm-

surge, and wildfire events as well as by sea level rise (e.g., Marissa et al., 2016; Walker 

and Barrie, 2006).  

 Coastal erosion plays both a disturbance and discovery role with archaeological sites, 

raising fundamental issues about salvage, identification, protection and site management. 

 There is a potential for increased deterioration of facilities and collections (e.g., non-

mechanically ventilated interiors, HVACs) from increased temperature, humidity, and 

precipitation, e.g., increased mold, rot and fungal decay; increased corrosion, etc… 

(Brimblecombe, 2014; Brimblecombe and Brimblecombe, 2016; Horowitz et al., 2016; 

Marissa et al., 2016).  

 Socio-economic impacts through lose or damage to cultural resources may occur. 

 Micro-climates which allow historic gardens to flourish at some cultural sites may be 

affected (e.g., Percy et al., 2015). 

 Longer growing seasons and warmer conditions may lead to increased presence and 

abundance of invasive plant species and pests (Marissa et al., 2016). 
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Figure 83. Example of rainfall intensity-duration-frequency curves for future climate scenarios. As illustrated, 

rainfall intensity for the “1 in a 100 year” event at Sandspit (Gwaii Haanas) is projected to increase from 64mm/hr to 

as much as 86mm/hr (5 minute duration) and at Tofino (Pacific Rim NPR) from 102mm/hr to as much as 133mm/hr 

(5 minute duration). The IDF_CC Tool (https://www.idf-cc-uwo.ca) permits user driven analysis of future 

projections for climatological stations across the country. 

 

https://www.idf-cc-uwo.ca/
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3. Climate Change Actions 
 

In general, most protected area agencies in Canada are only beginning to consider and develop 

climate change policies, planning tools, and management frameworks (Lemieux et al., 2011) 

(note: a draft Parks Canada climate change strategy, version 4.4, was last revised in 2008). There 

are, however, examples of adaptation and mitigation actions already underway in individual sites 

and within other jurisdictions that may inspire and guide actions (e.g., Gross et al., 2016; 

Lemieux et al., 2010; US NPS, 2010). 

 

3.1 Adaptation 
 

Adaptation is an adjustment in natural or human systems in response to actual or expected 

climate change impacts. Adaptation in protected areas often involves the implementation of 

established ecosystem-based management practices. These actions can represent “no regrets” 

since they broadly benefit the ecological and commemorative integrity at a site, regardless of the 

rate of climate change. This includes working with regional partners to manage landscape level 

disturbances; protecting and restoring ecosystems to build resilience; preventing the spread of 

invasive species; protecting species at risk; conserving built heritage at historic sites; replacing 

storm damaged resources and infrastructure with more sustainable and resilient designs; and, 

responding to changing visitor interests and needs.  

 

Other more regionally specific examples: 

 The Pacific Climate Impacts Consortium provides on-line climate analysis tools, 

including “Regional Analysis Tool” and the easy to use “Plan2Adapt” 

(https://www.pacificclimate.org/analysis-tools).  

 The Pacific Institute for Climate Solutions provides accessible climate change 

information for the region (http://www.pics.uvic.ca/).  

 Many of “natural solution” concepts are already embedded in Biosphere Reserves, 

included the Clayoquot Sound. 

 The “Joint Canada-US Pacific Marine Protected Area Vulnerability Assessment” 

assessed vulnerabilities to coastal ecosystems, including those in Pacific Rim NPR. The 

project was organized by the Commission for Environmental Cooperation (CEC) and 

involved Parks Canada staff. The final report is due in 2017. This assessment and other 

reports (Sloan, 2004; Steneck et al., 2002) reinforced the importance of improving the 

resilience of kelp forests to climate disturbance by reducing the added stress of urchin 

grazing (e.g., control urchin populations, sea otter recovery).  

 The Coastal Archaeological Resources Risk Assessment (CARRA) project helps 

managers respond to coastal hazard impacts to archaeological resources (Pollard-

Belsheim et al., 2014).  

 

 

https://www.pacificclimate.org/analysis-tools
http://www.pics.uvic.ca/
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Figure 9. Sea-level rise impacts and adaptation in Gulf Islands National Park Reserve (GINPR). GINPR used a 

digital elevation model derived from airborne light detection and ranging (LiDAR) to map inundation of its lands 

for a scenario of 1m rise in sea level by 2100. This scenario was based on extreme high estimate of global sea 

level rise (SLR) projected for Victoria, BC. Mapping was done to represent conditions under two levels of tide – 

mean sea level and high tide level. Impacts of SLR on species at risk, sensitive ecosystems, archaeological sites 

and park infrastructure were assessed to help planning for adaptation. Projected Sea Level Rise at Sidney Spit in 

GINPR from 2016 to the year 2100. Inundated areas are shown in dark blue colour. MSL= Mean Sea Level; 

HWT= High Water Tide. Prepared by T. Sharma. 

 

 

  

  
  
Figure 10. Greenhouse Gas Emissions per Field Unit. Emissions are calculated from energy (e.g., heating, 

electricity) and fuel expenditures, excluding travel, air charters, and some other sources. GHG emissions from 

energy cost are adjusted for source (e.g., coal, hydro, diesel, etc...). The targets in these figures are from 2015 

reduction targets (Parks Canada, 2015). Revised, lower targets to be communicated in 2017 (Canada, 2016).  
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3.2 Mitigation 
 

Mitigation refers to human interventions that reduce the source or enhance the sinks of GHG 

emissions. Carbon dioxide, methane, nitrous oxide, water vapour and ozone are the primary 

GHGs in the earth’s atmosphere, in addition to human-made chlorine- and bromine-containing 

substances. Parks Canada’s Asset and Environmental Management team provides national 

functional leadership, expertise and support related to GHG reductions. Sites interested in 

working on GHG reduction and more sustainable operations should confer with this team. As an 

example, this team annually tracks all Field Unit energy expenditures and GHG emissions and 

reports progress towards federal government reduction targets. The current target is 40% 

reduction in GHG emissions from federal buildings and fleets below the 2005 levels by 2030 

(Canada, 2016); it is clear that this will require an ambitious and concerted effort on the part of 

all. 

 

Mitigation examples include:  

 Evaluate progress towards Parks Canada / Field Unit GHG reduction targets. 

 Specify “green” and energy efficient designs for construction and renovation projects 

(e.g., LEED, R-2000, and Green Buildings BC).  

 Reduce the number and/or size of park vehicles and vessels to match need and maximize 

efficiency. Provide hybrid or electric where possible. 

 Electric utility and lawn vehicles for campground maintenance. 

 Anti-idling and cabin heat-recovery systems in trucks.  

 Use energy efficient products, promote energy efficiency and water conservation, reduce 

waste and support alternative transportation. 

 Review Parks Canada (2015) and US NPS (2012a). 

 

 

 

 
Figure 11. CEC Blue Carbon 

 

Blue Carbon is the carbon captured and stored in 

marine and freshwater ecosystems. Coastal ecosystems, 

including seagrass meadows and salt marshes, are 

especially important for climate mitigation as they 

sequester CO2 at significantly higher rates, per unit 

area, than terrestrial forests.  

 

In addition these ecosystem provide numerous benefits 

and services essential for climate change adaptation 

(e.g., coastal protection, water quality, habitat, food 

security, etc…). 

 

The Commission for Environmental Cooperation’s 

(CEC) Blue Carbon map shows the distribution of salt 

marsh, mangrove, and seagrass ecosystems in North 

America. This is available at: http://www.cec.org. The 

CEC has also supported Blue Carbon research in and 

around national parks, e.g., at Pacific Rim NPR (CEC, 

2017a; 2017b).   

 

http://www.cec.org/
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3.3 Possible Next Steps 
 

This report is intended to be a stepping off point, from here individuals and sites are encourage to 

consider how best to advance climate change actions in their own context. Here is a checklist of 

ideas that others have considered that may be of particular interest or relevance. 

 

 Enhance workforce climate literacy (e.g., Peterson et al., 2011; US NPS, 2012b).  

 

 Undertake more detailed analysis of climate trends, including impact models (e.g., 

hydrology, wildfire, infrastructure at risk, coastal visualization) and extreme weather 

events (e.g., Charron, 2016). 

 

 Conduct future scenario planning and explore operations under novel and equally 

plausible future conditions. Use scenarios to test (“wind tunnel”) strategic decisions and 

inform contingency plans (e.g., Gross et al., 2016; US NPS, 2013). 

 

 Conduct vulnerability assessments of species, ecosystems or governance structures. 

Vulnerability is the degree to which a system is susceptible to, and unable to cope with, 

the impacts of climate change (e.g., Edwards et al., 2015; Gleeson et al., 2011; Gross et 

al., 2016).  

 

 Incorporate climate change impacts and adaptation strategies into management planning. 

Recalibrate management objectives in the face of ecosystem change, system novelty and 

loss of resilience (e.g., Lemieux et al., 2011).  

 

 Revise visitor management and operational plans in response to changing visitor patterns 

and use (e.g., Fisichelli et al., 2015; Hewer et al., 2016). Diversify visitor experiences to 

provide alternatives to weather-dependent activities. 

 

 Quantify and understand carbon stocks and dynamics (e.g., US NPS, 2012a).  

 

 Evaluate and communicate the value of ecological goods and services (e.g., clean 

water/air, provision of food, maintain biodiversity, nature-based tourism, carbon storage, 

etc…) and manage for the sustainability of these services (e.g., Gross et al., 2016).  

 

 Maintain a list of climate science and management actions to help inform and influence 

park messaging. 

 

 Build networks and collaborate across multiple scales (e.g., Waterton Lakes NP, 

crownmanagers.org). 

 

 Consider the Public Infrastructure Engineering Vulnerability Committee (PIEVC) 

protocol (https://pievc.ca/protocol) in climate change vulnerable infrastructure projects.  

 

 “Explicitly recognize climate change as a management issue in state of the park reporting 

and monitoring frameworks”. This adaption option was one of two from 165 options 

http://crownmanagers.org/
https://pievc.ca/protocol
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deemed as necessary and “definitely implementable” by senior decision-makers for the 

Ontario park system (Lemieux and Scott, 2011).  

Please contact the Office of the Chief Ecosystem Scientist if you have any questions or would 

like to explore any of these next steps further. In addition, PDF copies of all references and the 

climate data are freely available upon request.   
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Appendix 1. Climate Change Projections 
 

Climate change summaries were determined for the geo-centroid1 of each national park and 

national marine conservation area. The method used to prepare the map followed Price et al. 

(2011) and used greenhouse gas (GHG) concentration scenarios adopted by the IPCC (2014) and  

General Circulation Models (GCMs)2. 

 

Of the four IPCC GHG concentration scenarios, the lowest and highest Representative 

Concentration Pathways (RCP), RCP 2.6 and RCP 8.5 were chosen. These are named after 

possible radiative forcing values in the year 2100 relative to pre-industrial values (i.e., +2.6 and 

+8.5 watts/m2, respectively). RCP 2.6 assumes that global annual GHG emissions (measured in 

CO2-equivalents) peak in 2010-2020, with emissions declining substantially thereafter. In RCP 

8.5, emissions continue to rise throughout the 21st century.   

 

To produce a high-resolution climate map, 

monthly time-series data were obtained for each 

GCM representing both the 20th century (1981–

2010) and the scenarios of GHG concentration for 

the 21st century. Each monthly value at each GCM 

grid node was normalized either by subtracting 

(for temperature variables) or dividing by (for 

other climate variables) the mean of that month’s 

values for the 30-year baseline period 1981–2010. 

The GCM projected changes in temperature and 

precipitation were averaged over 30-year periods 

and then interpolated using ANUSPLIN to the 

locations of climate stations in Canada and the 

USA. These data were then combined with 

observed station normals for the period 1981–2010 

to create projected normals for three consecutive 30-

year periods: 2011–2040, 2041–2070 and 2071–

2100. 

 

A Bessel interpolation scheme was used to generate daily temperature and precipitation 

sequences that pass monotonically through the monthly values. This allowed for a suite of 

bioclimatic indicator variables to be estimated for these periods, including for example, mean 

growing season duration and precipitation during the growing season (Table A1). A set of 

composite maps averaging the values of the four GCMs was created and used to extract the 

projected climatic data for the parks and NMCAs at each geo-centroid.  

 

No model driven by scenarios of future climate can ever provide definitive answers to questions 

about specific outcomes (e.g., how much change will occur at a specified location by a 

specified date?). However, temperature projections aligned with recent trends and there appears 

                                                 
1 In the cases of parks for which the geo-centroid is located in the sea, we extracted the data for 5 sets of coordinates 

determined to be on the land using Google maps. 
2 CANESM2, CESM1CAM5, HADGEM2ES, and MIROCESM. 

Figure A1. Projected change in annual daily 

minimum temperature for 2041-2070, relative to 

1961-1990 (Price et al., 2011). 
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to be strong agreement on the magnitude of warming to be expected in the short term (until 

2030–2040), independent of the RCP scenarios. This is because much of the warming projected 

for the next two to three decades is “committed warming” resulting from GHG emissions that 

have already occurred. It is only after ca. 2040 that the warming trajectories diverge, when early 

mitigation efforts (RCP 2.6 scenario) would evidently begin to have a positive effect. Further 

into the future, the range of possible warming increases, largely because of the divergence 

among the different GHG emission trajectories.  

 

Table A1. Bioclimatic variables mapped for past and future climatesa 
No. Variableb Description 

1  Annual mean temperature  Annual mean of monthly mean temperatures  

2  Mean diurnal temperature range  Annual mean of monthly mean daily temperature ranges  

3  Isothermality  Variable 2 ÷ variable 7  

4  Temperature seasonality  Standard deviation of monthly mean temperature estimates, 

expressed as a percentage of their mean  

5  Maximum temperature of warmest period  Highest monthly maximum temperature  

6  Minimum temperature of coldest period  Lowest monthly minimum temperature  

7  Annual temperature range  Variable 5 – variable 6  

8  Mean temperature of wettest quarter  Mean temperature of three wettest consecutive months  

9  Mean temperature of driest quarter  Mean temperature of three driest consecutive months  

10  Mean temperature of warmest quarter  Mean temperature of three warmest months  

11  Mean temperature of coldest quarter  Mean temperature of three coldest months  

12  Annual precipitation  Sum of monthly precipitation values  

13  Precipitation of wettest period  Precipitation of wettest month  

14  Precipitation of driest period  Precipitation of driest month  

15  Precipitation seasonality  Standard deviation of monthly precipitation estimates, 

expressed as a percentage of their mean  

16  Precipitation of wettest quarter  Total precipitation of three wettest consecutive months  

17  Precipitation of driest quarter  Total precipitation of three driest consecutive months  

18  Precipitation of warmest quarter  Total precipitation of three warmest months  

19  Precipitation of coldest quarter  Total precipitation of three coldest months  

20  Start of growing season  Date when daily mean temperature first meets or exceeds 5°C 

for five consecutive days in spring  

21  End of growing season  Date when daily minimum temperature first falls below –2°C 

after 1 August  

22  Growing season length  Variable 21 – variable 20  

23  Total precipitation in the three months 

before start of growing season  

Total precipitation in the three months before variable 20  

24  Total growing season precipitation  Total precipitation during variable 22  

25  Growing degree-days during growing 

season  

Total degree-days during variable 22, accumulated for all 

days where mean temperature exceeds 5°C  

26  Annual minimum temperature  Annual mean of monthly minimum temperatures  

27  Annual maximum temperature  Annual mean of monthly maximum temperatures  

28  Mean temperature during growing season  Mean temperature during variable 22  

29  Temperature range during growing 

season  

Highest minus lowest temperature during variable 22  

30 Climate Moisture Index (monthly) Precipitation minus potential evapotranspiration 
a In all cases, the descriptions should be considered estimates rather than actual values.  
b Variables 1–19 were generated by ANUCLIM; variables 20–29 were generated by SEEDGROW. The approach used creates a 

daily sequence of minimum and maximum temperature and precipitation, with the values forced monotonically through the 

monthly values. The resulting values are intended to represent mean conditions only, as the weather in any given year would be 

expected to produce different results, because of interannual variability. 
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