Ecological Integrity Monitoring at Parks Canada

Dan Kehler & Eric Tremblay
Atlantic Service Centre & Kouchibouguac National Park
A little about Parks Canada

• 125 years of parks, 100 years of Parks Canada
• Parks Canada manages:
 – 140 National Historic Sites (10%)
 – 42 National Parks (3% of Canada)
Parks Canada Mandate

- On behalf of the people of Canada, we **protect** and **present** nationally significant examples of Canada's natural and cultural heritage, and foster public understanding, appreciation and enjoyment in ways that ensure the ecological and commemorative integrity of these places for present and future generations.
Why monitor?

Monitoring tells us the...

status (where are we?)
&
trend (where are we going?)
of ...
What we monitor

• Ecological integrity

• Cultural integrity

• Visitor experience

• Public awareness and understanding
What drives monitoring at Parks Canada?

Legislation & policy
• report to parliament every two years

Management evaluation
• are our projects effective?

Moral
• guardians/steward role
Planning Cycle

- Management actions
- Park management plan
- State of the park report
- EI monitoring
 - Effectiveness monitoring
Program Design

Criteria

• Comprehensive
• Useful
• Sustainable
• Engaging
• Credible
Indicators ecosystems

<table>
<thead>
<tr>
<th>Forests</th>
<th>Wetlands</th>
<th>Freshwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrens</td>
<td>Coastal</td>
<td>Marine</td>
</tr>
</tbody>
</table>
Indicators and assessment
ecosystems, colours, arrows

Forests
\\\[-\rightarrow\]
Wetlands
\\\[\leftrightarrow\]
Freshwater
\\\[\downarrow\]
Barrens
\\\[\leftrightarrow\]
Coastal
\\\[\downarrow\]
Marine
\\\[\leftrightarrow\]
State of the Park Report – every 5 years
Developing monitoring

Ecosystem

Analysis

Measure 1
Measure 2
Measure 3
Measure 4
Measure 5

Public environment
Science environment
Developing monitoring

- Measure 1
- Measure 2
- Measure 3
- Measure 4
- Measure 5

Analysis

- Threshold identification
- Statistical analysis
- Study design
- Protocol selection
- Metric identification
- Measure selection
Measure selection

- Stakeholder consultation
- Conceptual ecosystem models
- Availability of protocols
- Historical data availability
- etc…
Measure examples in Atlantic NP’s

<table>
<thead>
<tr>
<th>Piping plover</th>
<th>Saltmarsh vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank swallows</td>
<td>Intertidal community</td>
</tr>
<tr>
<td>Greater yellowlegs</td>
<td>Estuarine IBI</td>
</tr>
<tr>
<td>Tern</td>
<td>Shorefast ice</td>
</tr>
<tr>
<td>Otter</td>
<td>Coastal erosion</td>
</tr>
<tr>
<td>St. Lawrence aster</td>
<td>Infrastructure footprint</td>
</tr>
<tr>
<td>Soft-shell clams</td>
<td>Unauthorized dune trails</td>
</tr>
<tr>
<td>Eel grass</td>
<td>Dune movement</td>
</tr>
<tr>
<td>Green crab</td>
<td>Saltmarsh surface area</td>
</tr>
</tbody>
</table>
Each measure needs interpretation

Moose density (#/km²)

<table>
<thead>
<tr>
<th>Thresholds</th>
<th>Target</th>
<th>Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

High EI | concerned | EI impaired
Threshold derivation

Thresholds are points of management concern

- Blend scientific information and human values continuum: PVA to common sense.
- Risk management – how serious is being wrong?

Threshold approaches

- Published
- Expert opinion
- Stress gradient
- Natural variability
- Common sense
Thresholds from published work

Example: Piping plover fledging success.

The recovery team promotes a fledgling success rate of 1.65 fledglings./breeding pair in order to meet ten-year recovery goals.
Thresholds from expert opinion

Example: Piping plover adult abundance

Based on expert assessment of habitat, it is expected that >10 pairs could be supported. 10 pairs is the maximum observed in the past 20 years.
Thresholds from stress gradient

Example: Lichen index of air purity (IAP)
Provincial database grouped into urban, sub-urban and wilderness sites.

Table 2. Mean Index of Air Purity scores for plots across a gradient of air quality (from unpublished data from Nova Scotia Department of Environment).

<table>
<thead>
<tr>
<th>Plot type</th>
<th>Location</th>
<th>n</th>
<th>Mean IAP</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Within 10km of center of major towns</td>
<td>8</td>
<td>0.092</td>
<td>0.065</td>
</tr>
<tr>
<td>Sub-urban</td>
<td>10-25km from major towns</td>
<td>11</td>
<td>0.510</td>
<td>0.09</td>
</tr>
<tr>
<td>Wilderness areas</td>
<td>>25km from major towns</td>
<td>16</td>
<td>0.716</td>
<td>0.113</td>
</tr>
</tbody>
</table>

Table 3. Thresholds for lichen species richness and Index of air purity at Kejimkujik.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of Air Purity</td>
<td><0.209</td>
<td>0.209-0.613</td>
<td>>0.613</td>
</tr>
</tbody>
</table>

20
Thresholds from natural variability

- >80% of thresholds
- What is natural?
- In the absence of a trend, assume current condition is “good”
- If reference data contains a mix of poor and good sites, use the EPA 75/25 rule. (be in the top quartile).
Thresholds from natural variability

Example: coastal erosion

- Twenty years of erosion rate data.
- Threshold based on 90th percentile (assume that 10% of years represent anomalies)
Thresholds from natural variability

Example: Eel grass extent

- For Kejimkujik, historical map at the time of park establishment defines “best” condition in hectares.
- What represents the fair and poor condition? 1/3 rule.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eelgrass extent</td>
<td>Poor: >66% decline in area from baseline reference condition</td>
</tr>
<tr>
<td></td>
<td>Fair: >33-66% decline in area from baseline reference condition</td>
</tr>
<tr>
<td></td>
<td>Good: Within 33% of baseline reference condition</td>
</tr>
</tbody>
</table>

Table 1. Thresholds for eelgrass extent at Kejimkujik.
Common sense thresholds

Example: # of unauthorized dune trails

• Goal is to have zero, what about fair/poor zones?
• No theory or case studies to use.
• Numbers chosen by group consensus, but appear arbitrary.
Rolling up sub-measures

Table 1. Thresholds for Piping plover population status at Kejimkujik Seaside.

<table>
<thead>
<tr>
<th>Abundance (# breeding pairs)</th>
<th>Productivity (# young fledged/pair)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥10</td>
<td>≥1.65</td>
<td>1</td>
</tr>
<tr>
<td><10</td>
<td><1.65</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-measure</th>
<th>Monitoring question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of Juvenile Clams (10-30 mm)</td>
<td>Is the mean density of juvenile clams ≥ 7.37 clams/m²?</td>
<td>No</td>
</tr>
<tr>
<td>Density of Young Adult Clams (>30-50 mm)</td>
<td>Is the mean density of young adult clams ≥ 5.32 clams/m²?</td>
<td>No</td>
</tr>
<tr>
<td>Density of Older Adult Clams (>50 mm)</td>
<td>Is the mean density of older adult clams ≥ 5.63 clams/m²?</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Questions?
Monitoring challenge: many expectations

• Park managers
• Science community
• Local stakeholders
• NGOs
• Parliament (broad public)

Each National Park has sought out its own balance of these competing interests
First hiccups

• What does “comprehensive” really mean?

• How do we monitor something we don’t fully understand?

• Can a small set of measures “represent” an ecosystem?

• How do we select measures?